• Title/Summary/Keyword: Reduced deformation

Search Result 615, Processing Time 0.03 seconds

Searching for the Steady State of Unstable Link Structures by using Reduced Dimension Technique (차원 저감화기법을 이용한 불안정 링크구조물의 안정경로 탐색)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.39-48
    • /
    • 2004
  • Generally, a structural system with large inextensional deformations, or in other words, non-strained deformation is called as 'Unstable Structure', Truss-linked structures, cable structures, membrane structures and movable structures as foldable space structures etc, are included in this category. In this paper, a dynamic analysis method for unstable structural systems is presented. Governing equations for dynamic analysis of unstable truss structures with inextensional displacements are derived. Because of singularity of inverse matrixin in practical analysis of unstable structure, the generalized inverse matrix is Introduced to resolve the singular problem. Also, the RREF technique is used to get the inextensional displacement mode. Two unstable truss structures are analyzed by using presented method. Damping is not considered. From the given results, it is known that proposed method is useful to figure out the dynamic behavior of unstable truss structures.

  • PDF

Analysis on the Discharge Capacity of Vertical Drains Installed in the Field (현장에 타설된 연직배수재의 통수능력 분석)

  • 박영목;진규남;정하익;정길수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.512-519
    • /
    • 2000
  • The discharge capacity of vertical drains installed in the field is reduced with time elapsed after installation due to deformation of drains and clogging effect. Discharge capacity of two types of vertical drains was analysed about three years after installation in the subsoil. Discharge capacity of two types of vertical drains were measured by small, middle, and large scale test apparatus. The results indicate that the discharge capacity of vertical drains after three years operation dramatically decreased compare to the initial discharge capacity.

  • PDF

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

Modification of Turbulent Boundary Layer Flow by Local Wall Vibration (국소 벽면 진동에 의한 난류경계층 유동 변화)

  • Kim, Chul-Kyu;Jeon, Woo-Pyung;Park, Jin-Il;Kim, Dong-Joo;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.

Reduced-Scale Model Tests on the Effect of Preloading on Residual Deformation of Reinforced Earth Structures (선행하중이 보강토 구조물의 잔류변형에 미치는 영향에 관한 축소모형실험)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.101-116
    • /
    • 2008
  • The use of reinforced earth walls id permanent structures is getting its popularity. Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exists concerns over long-term residual deformations when subjected to repeated and/or cyclic loads, during their service period. In this investigation, the effects of pre-loading in reducing long term residual deformation of reinforced soil structures under sustained and/or repeated loading environment are investigated using a series of reduced-scale model tests. A model pier and a back-to-back (BTB) reinforced soil structures were constructed and tested under various loading and backfilling conditions. The results indicate that the pre-loading technique can be an effective means of controlling residual deformations of reinforced soils under various loading conditions.

The Study About Deformation of a Peristaltic Pump using Numerical Simulation (수치해석을 이용한 튜브 연동식 펌프의 변형에 대한 연구)

  • HUNG, NGUYEN BA;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.652-658
    • /
    • 2015
  • The purpose of this study is to investigate the effects of changing dimension of a soft tube in a peristaltic pump on deformation, stress and fluid flow rate of the peristaltic pump. Geometries of the peristaltic pump is created in a Catia drawing software based on specifications of a real peristaltic pump. Afterwards, the geometries of this pump is imported into a commercial Ansys software to calculate deformation, stress, and fluid flow rate of this pump. The simulation results showed that the deformation and stress of the soft tube is increased by increasing soft tube diameter from 2 mm to 4 mm. When the tube diameter is increased to 5 mm and tube thickness is reduced to 0.5 mm, the soft tube is damaged. The highest fluid flow rate could be found at the tube thickness and diameter of 1 mm and 4 mm, respectively.

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

Time-dependent Deformation Characteristics of Geosynthetic Reinforced Modular Block Walls under Sustained/cyclic Loading (지속하중 및 반복하중 재하시 보강토 옹벽의 잔류변형 특성)

  • Yoo, Chung-Sik;Kim, Young-Hoon;Han, Dae-Hui;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.5-21
    • /
    • 2007
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when they are subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained anuor repeated loads were investigated using reduced-scale model tests. The results indicated that a sustained or repeated load can yield appreciable magnitude of residual deformation, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

STRUCTURAL DEFORMATION EFFECT ON THE AERODYNAMICS OF A WING WITH WINGLETS (Winglet이 부착된 날개의 구조변형에 의한 공력 변화)

  • Lee, Y.M.;Kang, Y.J.;Jung, S.K.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.39-42
    • /
    • 2009
  • The aerodynamic characteristics of aircraft winglet with structural deformation was investigated using the static FSI(Fluid-Structure Interaction) system. The system, comprised of CAD, CFD, CSD, VSI, and grid regeneration modules, was constructed. In the process VSI, grid regeneration, and integration modules were developed to combine CSD and CFD modules. As a test model, KC-135A, the double winglet suggested by Whitcomb, was selected and its aerodynamic characteristics for the rigid and deformable models was calculated by applying the static FSI system. As a result, the lift and drag coefficients of test models were reduced to 11% and 1.3%, respectively.

  • PDF