• Title/Summary/Keyword: Redox conditions

Search Result 198, Processing Time 0.207 seconds

Reactions of As(V) with Fe(II) under the Anoxic Conditions (무산소 조건에서의 Fe(II)와 As(V)의 반응에 관한 연구)

  • Jung, Woo-Sik;Lee, Sang-Hun;Chung, Hyung-Keun;Kim, Sun-Joon;Choi, Jae-Young;Jeon, Byong-Hun
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • The purpose of this study was to investigate the feasibility of As(V) reduction by aqueous Fe(II), and subsequent As(III) immobilization by the precipitation of As(III) incorporated magnetite-like material [i.e., co-precipitation of As(III) with Fe(II) and Fe(III)]. Experimental results showed that homogeneous As(V) reduction did not occur by dissolved Fe(II) at various pH values although the thermodynamic calculation was in favor of the redox reaction between As(V) and Fe(II) under the given chemical conditions. Similarly, no heterogeneous reduction of sorbed As(V) by sorbed Fe(II) was observed using synthetic iron (oxy)hydroxide (Goethite, ${\alpha}$-FeOOH) at pH 7. Experimental results for the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen showed that As(V) inhibited the oxidation of Fe(II). These results indicate that As(V) could be stable in the presence of Fe(II) under the anoxic or subsurface environments.

Characteristics of Fe Reduction Process of Shallow Groundwater in a Reclaimed Area, Kim-je (김제시 간척지역 천부 지하수내 철 환원작용 특성에 대한 고찰)

  • Kim, Ji-Hoon;Cheong, Tae-Jin;Ryu, Jong-Sik;Kim, Rak-Hyeon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • The study area is located on the western coastal region of Korea, partly had been reclaimed lands. Groundwaters of the coastal area show lower Eh and DO values (Eh: 0.57 V ${\rightarrow}$ 0.13 V, DO; 9.7 mg/l ${\rightarrow}$ 1.3 mg/l), and higher Fe concentrations (> 20 mg/l) than those of the inner land (< 0.3 mg/l), indicating that the redox condition of groundwater changes from oxic into suboxic/anoxic conditions as it flows from the inland toward the coastal area. In addition, Fe speciation of groundwater from the coastal area demonstrates that the most dissolved Fe exist as $Fe^{2+}$, reflecting that groundwater is under the anoxic condition to sufficiently occur Fe reduction. According to the result of Fe extraction with the sediment samples from three wells (A, B, C), the sediments provide enough $Fe^{3+}$ to occur the Fe reduction in the groundwater. Integrated all results of the groundwater and sediment, we infer that the Fe reduction to occur in groundwater is associated with the reclamation processes of the study area.

The Effect of Phases of Starting Materials on the Grain Size at High Pressure: the Comparison of Grain Size in the Samples Using Glass and Nano Powder as Starting Materials (고압환경에서의 결정 크기에 원시료의 상이 미치는 영향: 비정질 시료와 나노파우더를 이용한 시료의 결정 크기 비교)

  • Eun Jeong Kim;Alessio Zandona;Takehiko Hiraga;Sanae Koizumi;Nobuyoshi Miyajima;Tomoo Katsura;Byung-Dal So
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • In this study, we report the effect of starting materials on the grain size in a multi-component system at high pressure experiments. We used two different starting materials, glass and nano powders, to synthesize bridgmanite in the reduced conditions in the presence of calcium-ferrite-phase MgAl2O4 to compared the grain size of synthesized samples. After synthesizing the sample at 40 GPa, 2000 K for 20 hrs, the sample from glass showed the grain size of 50-200 nm whereas the one from nano powders has ~500 nm of grains. This difference may come from 1) the temperature of 2000 K which is low enough for glass starting materials to make more crystal nucleis than to grow crystal size or 2) the possible difference in the redox state of starting materials. It is suggested that the using of nano powders is better to synthesize bigger grains in high pressure experiments with multi-component systems rather than using glass starting materials.

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.

Trace Metal Contamination and Solid Phase Partitioning of Metals in National Roadside Sediments Within the Watershed of Hoidong Reservoir in Pusan City (부산시 회동저수지 집수분지 내 국도도로변 퇴적물의 미량원소 오염 및 존재형태)

  • Lee Pyeong-Koo;Kang Min-Joo;Youm Seung-Jun;Lee In-Gyeong;Park Sung-Won;Lee Wook-Jong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.20-34
    • /
    • 2006
  • This study was undertaken to assess the anthropogenic impact on trace metal concentrations (Zn, Cu, Pb, Cr, Ni, and Cd) of roadside sediments (N = 70) from No.7 national road within the watershed of Hoidong Reservoir in Pusan City and to estimate the potential mobility of selected metals using sequential extraction. We generally found high concentrations of metals, especially Zn, Cu and Pb, affected by anthropogenic inputs. Compared to the trace metal concentrations of uncontaminated stream sediments, arithmetic mean concentrations of roadside sediments were about 7 times higher for Cu, 4 times higher for Zn, 3 times higher for Pb and Cr and, 2 times higher for Ni and As. Speciation data on the basis of sequential extraction indicate that most of the trace metals considered do not occur in significant quantities in the exchangeable fraction, except for Cd and Ni whose exchangeable fractions are appreciable (average 29.3 and 25.8%, respectively). Other metals such as Zn (51.4%) and Pb (45.2%) are preferentially bound to the reducible fraction, and therefore they can be potentially released by a pH decrease and/or redox change. Copper is mainly found in the organic fraction, while Cd is highest in the exchangeable fraction, and Cr and Ni in the residual fraction. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Cd>Ni>Pb>Zn>Cr>Cu. Although the total concentration data showed that Zn was typically present in potentially harmful concentration levels, the data on metal partitioning indicated that Cd, Ni and Pb pose the highest potential hazard for runoff water. As potential changes of redox state and pH may remobilize the metals bound to carbonates, amorphous oxides, and/or organic matter, and may release and flush them through drain networks into the watershed of Hoidong Reservoir, careful monitoring of environmental conditions appears to be very important.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.

Evaluation of co- and Sequential Separation for Tc, Np and U by a $(TBP-TOA)/n-dodecane-HNO_3$ Extraction System ($(TBP-TOA)/n-dodecane-HNO_3$ 추출 계에 의한 Tc, Np, U의 공추출 및 순차분리 평가)

  • Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Yang, Han-Beom;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.133-143
    • /
    • 2007
  • This study was performed to evaluate the co- and sequential separation of Tc, Np and U from the simulated multi-component HLW solution by a TBP (tributyl phosphate)-TOA (tri- octyl amine)/NDD $(n-dodecane)-HNO_3$ extraction system. An optimal condition of (30% TBP-0.5% TOA)/NDD-1 M $HNO_3$ was selected by taking account of a prevention of the 3rd phase and effects of concentration of TBP, TOA and nitric acid on the co-extraction of Tc, Np and U. In that condition, the extraction yields were 81% (Tc), 85% (Np), less than 9% (Am and RE elements), about 8% (Pd), and less than 5% (other elements) so that the system developed for the co-extraction of Tc, Np and U was proved to be available. For that, however, more than 99% of Zr was found to be pre-removed. The co-extracted Tc, Np and U were sequentially separated in order of Tc(stripping agent : 5 M $HNO_3$)${\rightarrow}Np$ by reductive stripping (reductive-stripping agent : 0.1 M AHA)${\rightarrow}U$ (stripping agent : 0.01 M $HNO_3$), and then their separation factors were evaluated. At these conditions, 95% of Tc, 98% of Np and 99% of U could be recovered in each step.

  • PDF

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Vermicomposting of Leather Waste Sludge by Earthworm, Lumbricus rubellus (I) (지렁이를 이용(利用)한 피혁(皮革) 슬러지의 퇴비화(堆肥化)에 관(關)한 연구(硏究)(I))

  • Son, Hee-Jeong;Kim, Hyeong-Seok;Song, Young-Chae;Sung, Nak-Chang;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 1996
  • The study on the ripening of leather waste sludge was performed to vemistabilize the sludge effectively using a laboratory scale darkened wood box reactor ($10{\times}10{\times}20cm$). The acceptable feed conditions for earthworm of Eh, alkalinity were obtained in the 30th and 35th days, respectively. The value of pH was gradually decreased from 7.8 to 7.1 through the ripening time. The contents of heavy metals of the ripened sludge were estimated as lower levels compared to the other regulatory standards for compost. After the ripening time for 50days, the physico-chemical properties of the sludge were estimated as pH 7.1, water content 72%, redox potential 85mV, electrolytic conductivity $2,620{\mu}mhos/cm$ and alkalinity 450 ppm as $CaCO_3$, respectively. In the ripened sludge, survival rate of the earthworms for 50 days was about 75%, and the live weight increase rate was about 230% at the temperature range of $20{\sim}25^{\circ}C$. Moreover, hatching rate of the earthworm cocoons was about 87% and the highest value was obtained in the 20~30th days. From the above results, it was evaluated that leather waste sludge could be vermistabilized effectively by earthworms, when the sludge was ripened during 50 days.

  • PDF

High Ferrihydrite Turbidity in Groundwater of Samdong-Myeon (Ulsan) by Carbonate-Water Inflow of Deep Origin (심부 탄산수의 유업에 의한 울산시 삼동면 지하수의 높은 페리하이드라이트 탁도)

  • Jeong, Gi-Young;Kim, Seok-Hwi;Kim, Kang-Joo;Jun, Seong-Chun;Ju, Jeong-Woung;Choi, Mi-Jung;Cheon, Jeong-Yong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2011
  • The turbidity in several wells of Samdong-myeon, Ulsan, exceeded potable groundwater standard (1 NTU). Mineralogical analysis showed that the fine suspended particles are ferrihydrite spheres with a size of less than $0.5\;{\mu}m$ and helical iron-oxidizing bacterial filaments, and their aggregates. Ferrihydrite was almost amorphous only showing two electron diffraction rings, and contained Si and P. Helical bacterial filaments were almost replaced by ferrihydrite. The helical bacteria have played an important role in the ferrihydrite formation by becoming the loci for ferrihydrite precipitation as well as oxidizing ferrous iron. The physicochemical conditions of low pH, low redox potential, high Ca concentration, and high alkalinity are consistent with the hydrogeochemical characteristics of carbonate groundwater, implicating that the inflow of deep ferriferous carbonate groundwater and its oxidation have caused the ferrihydrite turbidity in several wells of the study area.