DOI QR코드

DOI QR Code

한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea

  • 최재훈 (고려대학교 지구환경과학과) ;
  • 박선주 ((주)어스이엔지) ;
  • 서현수 (고려대학교 지구환경과학과) ;
  • 안현태 (고려대학교 지구환경과학과) ;
  • 이정환 (한국원자력환경공단) ;
  • 박정훈 ((주)어스이엔지) ;
  • 윤성택 (고려대학교 지구환경과학과)
  • Jaehoon Choi (Department of Earth and Environmental Sciences, Korea University) ;
  • SunJu Park (Earth E&G) ;
  • Hyunsoo Seo (Department of Earth and Environmental Sciences, Korea University) ;
  • Hyun Tai Ahn (Department of Earth and Environmental Sciences, Korea University) ;
  • Jeong-Hwan Lee (Korea Radioactive Waste Agency) ;
  • Junghoon Park (Earth E&G) ;
  • Seong-Taek Yun (Department of Earth and Environmental Sciences, Korea University)
  • 투고 : 2023.12.13
  • 심사 : 2023.12.20
  • 발행 : 2023.12.29

초록

고준위 방사성폐기물을 심지층에 안전하게 처분하기 위해서는 방사성 핵종의 장기적 지구화학 거동에 대한 정확한 예측이 요구된다. 이와 관련하여 본 연구에서는 국내 심부 지하수를 대표하는 다섯가지 지화학 환경 조건에서 지화학 모델링을 수행하여 일부 방사성 핵종의 지화학 거동을 예측하였다. 다섯가지 국내 심부 지하수의 지화학 환경은 다음과 같다: 고 TDS 염지하수(G1), 산성 pH의 CO2가 풍부한 지하수(G2), 고 pH 알칼리성 지하수(G3), 황산염이 풍부한 지하수(G4), 묽은(담수) 지하수(G5). 3~12의 pH 범위와 ±0.2V의 산화-환원전위(Eh) 조건에서 일부 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 국내 심부 지하수 내에서의 용해도와 화학종(존재형태)을 예측하였다. 모델링 결과, 용존 상태의 우라늄은 주로 U(IV)로서 중성~알칼리성의 넓은 pH 환경에서 높은 용해도를 보였으며, Eh가 -0.2V인 환원 환경에서도 알칼리 pH 조건에서 높은 용해도를 보였다. 이러한 높은 용해도는 주로 Ca-U-CO3 착물의 형성에 의한 것으로 예측되는데, 이 착물의 활동도(activity)는 국내 심부 지하수 중 주요 단층대를 따라 산출되는 G2와 화강암반에 위치하는 G3에서 높다. 한편, 플루토늄(Pu)의 용해도는 pH에 따라 달라지며, 특히 중성~알칼리성 조건에서 가장 낮은 용해도가 나타난다. 주요 화학종은 Pu(IV)와 Pu(III)이며, 이들은 주로 흡착을 통해 제거될 것으로 추정된다. 그러나 콜로이드에 의한 이동을 고려하면, 이온강도가 낮은 심부 지하수인 G3와 G5 유형에서 콜로이드 형성 및 이동 촉진에 따라 이동성이 증가할 것으로 예상된다. 팔라듐(Pd)은 환원 환경에서는 황화물 침전 반응으로 인해 낮은 용해도를 나타내며, 산화 환경에서는 주로 금속(수)산화물에의 흡착을 통해 Pd(OH)3-, PdCl3(OH)2-, PdCl42- 및 Pd(CO3)22-와 같은 음이온 착물이 제거될 것으로 판단된다. 본 연구는 한국의 심부 지하수 환경에서 방사성 핵종의 운명과 이동에 대한 이해를 높이고, 고준위 방사성 폐기물의 안전한 처분을 위한 전략 개발에 기여할 것으로 기대된다.

The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.

키워드

과제정보

본 논문은 2022년도 정부(산업통상자원부)의 재원으로 "사용후핵연료관리핵심기술개발사업단" 및 한국에너지기술평가원의 지원을 받아 수행된 연구사업의 결과임(과제번호 2021040101003C; 과제명 "사용후핵연료 처분 부지평가기술 및 안전성 입증체계 구축").

참고문헌

  1. Abdelouas, A., Lutze, W. and Nuttall, E.H. (1999) Uranium: Mineralogy, Geochemistry and the Environment. doi: 10.1515/9781501509193-014
  2. Ahn, H., Oh, Y., Ryu, J.H. and Jo, H.Y. (2020) Uranium sequestration in fracture filling materials from fractured granite aquifers. Journal of Environmental Radioactivity, v.225. doi: 10.1016/j.jenvrad.2020.106440
  3. Akira KITAMURA. (2021) JAEA-TDB-RN in 2020: Update of JAEA's Thermodynamic Database for Solubility and Speciation of Radionuclides for Performance Assessment of Geological Disposal of High-level and TRU Wastes Nuclear Fuel Cycle Engineering Laboratories Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development. doi: 10.11484/jaea-data-code-2020-020
  4. Bethke, C.M. (1995) Geochemist's Workbench.
  5. Birkholzer, J., Houseworth, J. and Tsang, C.F. (2012) Geologic disposal of high-level radioactive waste: Status, key issues, and trends. In Annual Review of Environment and Resources, v.37, p.79-106. doi: 10.1146/annurev-environ-090611-143314
  6. Brookins, D.G. (1984) Geochemical aspects of radioactive waste disposal. https://inis.iaea.org/search/search.aspx?orig_q=RN:16051179doi: 10.1007/978-1-4613-8254-6
  7. Bruggeman, C. and Maes, N. (2010) Uptake of uranium(VI) by pyrite under boom clay conditions: influence of dissolved organic carbon. Environmental Science & Technology, v.44 11, p.4210-4216. https://api.semanticscholar.org/CorpusID:206936378 doi:10.1021/es100919p
  8. Bush, R.P. (1991) Recovery of platinum group metals from high level radioactive waste. Platinum Metals Review, v.35(4), p.202-208. https://doi.org/10.1595/003214091X354202208
  9. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K. and Koh, Y.K. (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, v.385(1-3), p.272-283. doi: 10.1016/J.SCITOTENV.2007.06.038
  10. Chang, K.H. and Kim, H.M. (1968) Cretaceous paleocurrent and sedimentation in northwestern part of Gyeongsang Basin, southern Korea. Journal of the Geological Society of Korea, v.4(2), p.77-97.
  11. Cherry, J.A., Alley, W.M. and Parker, B.L. (2014) Geologic disposal of spent nuclear fuel. Bridge Emerging Issues, Earth Resources Engineering, v.44(1), p.51-59.
  12. Choi, B.Y., Yun, S.T., Mayer, B., Hong, S.Y., Kim, K.H. and Jo, H.Y. (2012) Hydrogeochemical processes in clastic sedimentary rocks, South Korea: A natural analogue study of the role of dedolomitization in geologic carbon storage. Chemical Geology, v.306-307, p.103-113. doi: 10.1016/j.chemgeo.2012.03.002
  13. Choi, H.-I. (1986) Sandstone petrology of the Sindong Group, southwestern part of the Gyeongsang Basin. Journal of the Geological Society of Korea, v.22(3), p.212-223.
  14. Choi, J., Yu, S., Park, S., Park, J. and Yun, S.-T. (2022) Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries. Economic and Environmental Geology, v.55(6), p.737-760. doi: 10.9719/EEG.2022.55.6.737
  15. Choppin, G.R. (2003) Actinide Speciation in the Environment. Radiochim. Acta, v.91, p.649. doi: 10.1524/ract.91.11.645.23469
  16. Choppin, G.R., Bond, A.H. and Hromadka, P.M. (1997) Redox Speciation of Plutonium. J. Radio. Nucl. Chem., v.219(2), p.210. doi: 10.1007/bf02038501
  17. Choppin, G.R., Morgenstern, A. and Kudo, A. (2001) Plutonium in the Environment (Vol. 1).
  18. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth Science Reviews, v.52(1-3), p.175-235. doi: 10.1016/S0012-8252(00)00029-5
  19. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, v.101(3), p.225-249. doi: https://doi.org/10.1016/j.earscirev.2010.05.004
  20. Claret, F., Marty, N. and Tournassat, C. (2018) Modeling the Longterm Stability of Multi-barrier Systems for Nuclear Waste Disposal in Geological Clay Formations. In Reactive Transport Modeling (pp. 395-451). doi: https://doi.org/10.1002/9781119060031.ch8 
  21. Clark, D.L. (2000) The Chemical Complexities. Los Alamos Science, p.364.
  22. Cleveland, J. (1971) The Chemistry of Plutonium. doi: 10.1016/s0003-2670(01)82404-1
  23. Cui, D. and Eriksen, T. (1997) On the Sorption of Co and Cs on Stripa Granite Fracture-Filling Material. doi: 10.1524/ract.1997.79.1.29
  24. Denecke, M.A. (2006) Actinide speciation using X-ray absorption fine structure spectroscopy. Coord. Chem. Rev., v.250(7-8), p.730. doi: 10.1016/j.ccr.2005.09.004
  25. Dideriksen, K., Christiansen, B.C., Baker, J.A., Frandsen, C., BalicZunic, T., Tullborg, E., Morup, S. and Stipp, S. L. S. (2007) Feoxide fracture fillings as a palaeo-redox indicator: Structure, crystal form and Fe isotope composition. Chemical Geology, v.244(1-2), p.330-343. doi: 10.1016/j.chemgeo.2007.06.027
  26. Dong, W., Ball, W.P., Liu, C., Wang, Z., Stone, A.T., Bai, J. and Zachara, J.M. (2005a) Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment. Environmental Science & Technology, v.39(20), p.7949-7955. doi: 10.1021/es0505088
  27. Dong, W., Ball, W.P., Liu, C., Wang, Z., Stone, A.T., Bai, J. and Zachara, J.M. (2005b) Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment. Environmental Science & Technology, v.39(20), p.7949-7955. doi: 10.1021/es0505088
  28. Dong-Kwon, K. (2004) Effect of pH, redox potential (Eh) and carbonate concentration on actinides solubility in a deep groundwater of Korea. Nuclear Engineering and Technology, v.36(2), p.196-202.
  29. Duff, M.C. and Amrhein, C. (1996a) Uranium(VI) Adsorption on Goethite and Soil in Carbonate Solutions. Soil Science Society of America Journal, v.60(5), p.1393-1400. doi: https://doi.org/10.2136/sssaj1996.03615995006000050014x
  30. Duff, M.C. and Amrhein, C. (1996b) Uranium(VI) Adsorption on Goethite and Soil in Carbonate Solutions. Soil Science Society of America Journal, v.60(5), p.1393-1400. doi: https://doi.org/10.2136/sssaj1996.03615995006000050014x
  31. Espriu-Gascon, A., Martinez-Torrents, A., Serrano-Purroy, D., Gimenez, J., de Pablo, J. and Casas, I. (2020) Contribution of phases segregated from the UO2 matrix to the release of radionuclides from spent nuclear fuel and duration of the Instant Release Fraction (IRF). Journal of Nuclear Materials, v.532. doi:10.1016/j.jnucmat.2020.152066
  32. Fernandes, M.M., Baeyens, B. and Beaucaire, C. (2012) Radionuclide retention at mineral-water interfaces in the natural environment. doi: 10.1533/9780857097194.2.261
  33. Finneran, K.T., Housewright, M.E. and Lovley, D.R. (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environmental Microbiology, v.4(9), p.510-516. doi: https://doi.org/10.1046/j.1462-2920.2002.00317.x
  34. Forsyth, R.S. and Werme, L.O. (1992) Spent fuel corrosion and dissolution. Journal of Nuclear Materials, v.190(C), p.3-19. doi:10.1016/0022-3115(92)90071-R
  35. Fox, P., Davis, J. and Zachara, J. (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochimica et Cosmochimica Acta, v.70, p.1379-1387. doi: 10.1016/J.GCA.2005.11.027
  36. Fox, P.M., Davis, J.A. and Zachara, J.M. (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochimica et Cosmochimica Acta, v.70(6), p.1379-1387. doi: https://doi.org/10.1016/j.gca.2005.11.027
  37. Fujikawa, Y. and Fukui, M. (1997a) Radionuclide Sorption to Rocks and Minerals: Effects of pH and Inorganic Anions. Part 1. Sorption of Cesium, Cobalt, Strontium and Manganese. doi:10.1524/ract.1997.76.3.153
  38. Fujikawa, Y. and Fukui, M. (1997b) Radionuclide Sorption to Rocks and Minerals: Effects of pH and Inorganic Anions. Part 2. Sorption and Speciation of Selenium. doi: 10.1524/ract.1997.76.3.163
  39. Giffaut, E., Grive, M., Blanc, P., Vieillard, P., Colas, E., Gailhanou, H., Gaboreau, S., Marty, N., Made, B. and Duro, L. (2014a) Andra thermodynamic database for performance assessment: ThermoChimie. Applied Geochemistry, v.49, p.225-236. doi:10.1016/J.APGEOCHEM.2014.05.007
  40. Giffaut, E., Grive, M., Blanc, P., Vieillard, P., Colas, E., Gailhanou, H., Gaboreau, S., Marty, N., Made, B. and Duro, L. (2014b) Andra thermodynamic database for performance assessment: ThermoChimie. Applied Geochemistry, v.49, p.225-236. doi:10.1016/j.apgeochem.2014.05.007
  41. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C. and Wanner, H. (1992) Chemical Thermodynamics of Uranium.
  42. Grive, M., Duro, L., Colas, E. and Giffaut, E. (2015) Thermodynamic data selection applied to radionuclides and chemotoxic elements: An overview of the ThermoChimie-TDB. Applied Geochemistry, v.55, p.85-94. doi: 10.1016/j.apgeochem.2014.12.017
  43. Hanley, J.J. (2005) The aqueous geochemistry of the platinum-group elements (PGE) in surficial, low-T hydrothermal and high-T magmatic-hydrothermal environments. Exploration for PlatinumGroup Element Deposits, v.35, p.35-56.
  44. Hixon, A.E. and Powell, B.A. (2018) Plutonium environmental chemistry: mechanisms for the surface-mediated reduction of Pu(v/vi). Environmental Science: Processes and Impacts, v.20(10), p.1306-1322. doi: 10.1039/c7em00369b
  45. Hsu, C.-N., Wei, Y., Chuang, J., Tseng, C., Yang, J.-Y., Ke, C.-H., Cheng, H.-P. and Teng, S. (2002) Sorption of several safety relevant radionuclides on granite and diorite - a potential repository host rock in the Taiwan area. Radiochimica Acta, v.90, p.659-664. doi: 10.1524/ract.2002.90.9-11_2002.659
  46. Hua, B. and Deng, B. (2008) Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ. Sci. Technol., v.42, p.8703. doi: 10.1021/es801225z
  47. Hummel, W., Berner, U., Curti, E., Pearson, F.J. and Thoenen, T. (2002) Nagra/PSI chemical thermodynamic data base 01/01. Radiochimica Acta, v.90(9-11), p.805-813. doi: 10.1524/RACT.2002.90.9-11_2002.805
  48. Hyun, S.P., Davis, J.A., Sun, K. and Hayes, K.F. (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ. Sci. Technol., v.46(6), p.3369. doi: 10.1021/es203786p
  49. IAEA. (2003) Scientific and Technical Basis for the Geological Disposalof Radioactive Wastes.
  50. Johnson, L., Ferry, C., Poinssot, C. and Lovera, P. (2005) Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal. Part I: Assessment of the instant release fraction. Journal of Nuclear Materials, v.346(1), p.56-65. doi: 10.1016/J.JNUCMAT.2005.04.071
  51. Kaplan, D.I. (2003) Influence of surface charge of an Fe-oxide and an organic matter dominated soil on iodide and pertechnetate sorption. v.91(3), p.173-178. doi: doi:10.1524/ract.91.3.173.19977
  52. Keeney-Kennicutt, W. and Morse, J. (1985) The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute solutions and seawater. Geochimica et Cosmochimica Acta, v.49, p.2577-2588. doi: 10.1016/0016-7037(85)90127-9
  53. Kersting, A.B. (2012) Impact of colloidal transport on radionuclide migration in the natural environment. doi: 10.1533/9780857097194.2.384
  54. Kersting, A.B., Zhao, P., Zavarin, M., Sylwester, E.R., Allen, P.G., Williams, R.W., Kersting, A.B. and Remus, P.W. (2003) ColloidalFacilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation. doi: 10.2172/15006520
  55. Keum, D., Baik, M. and Hahn, P. (2002) Speciation and Solubility of Major Actinides Under the Deep Groundwater Conditions of Korea. Nuclear Engineering and Technology, v.34, p.517-531. https://www.semanticscholar.org/paper/a87fc91673b7a34241218e9d425892653d766835
  56. Kim, E., Ahn, H., Jo, H., Ryu, J. and Koh, Y. (2017) Chlorite alteration in aqueous solutions and uranium removal by altered chlorite. Journal of Hazardous Materials, v.327, p.161-170. doi:10.1016/j.jhazmat.2016.12.051
  57. Kim, H., Kaown, D., Mayer, B., Lee, J.-Y., Hyun, Y. and Lee, K.-K. (2015) Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Science of the Total Environment, v.533, p.566-575. doi: 10.1016/j.scitotenv.2015.06.080
  58. Kim, H.-K. and Cho, H.-R. (2022) Evaluation of americium solubility in synthesized groundwater: geochemical modeling and experimental study at over-saturation conditions. Journal of Nuclear Fuel Cycle and Waste Technology, v.20(4), p.399-410. doi: 10.7733/jnfcwt.2022.041
  59. Kim, H.-R., Yu, S., Oh, J., Kim, K.-H., Lee, J.-H., Moniruzzaman, M., Kim, H. K. and Yun, S.-T. (2019) Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea. Agriculture, Ecosystems & Environment, v.273, p.50-61. doi: 10.1016/j.agee.2018.12.010
  60. Kim, K.H., Yun, S.T., Yu, S., Choi, B.Y., Kim, M.J. and Lee, K.J. (2020) Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. Journal of Hydrology, v.589. doi: 10.1016/j.jhydrol.2020.125202
  61. Kim, S.S., Kang, K.C., Baik, M.H. and Choi, J.W. (2007) Solubilities of Actinides in a Domestic Groundwater. Abstract of Transactions of the Korean Nuclear Society Autumn Meeting. doi: 10.1016/j.jiec.2008.07.005
  62. Koh, D.-C., Mayer, B., Lee, K.-S. and Kyung-Seok, K. (2010) Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. Journal of Contaminant Hydrology, v.118(1-2), p.62-78. doi: 10.1016/j.jconhyd.2010.08.003
  63. Koh, S.M., Takagi, T., Kim, M.Y., Naito, K., Hong, S.S. and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in South Korea. Resource Geology, v.50(4), p.229-242. doi: 10.1111/j.1751-3928.2000.tb00072.x
  64. Lee, E., Jeong, D.-H., Kim, Y.-T., Shin, I., Jeong, Y.-Y., Kim, J.-I., Lee, M., Kim, H., Lee, S.-H. and Kim, M. (2024) Characterization of naturally occurring radioactive material dynamics in community water systems using groundwater from Ganghwa Island, Republic of Korea. Journal of Hydrology, v.628, p.130512. doi: https://doi.org/10.1016/j.jhydrol.2023.130512
  65. Lee, Y.Il. (2009) Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: Implications for provenance and source weathering at an active continental margin. Sedimentary Geology, v.215(1), p.1-12. doi: https://doi.org/10.1016/j.sedgeo.2008.12.004
  66. Lee, S., Lee, J., Jeong, M.-S. and Iqbal, S. (2023) Multi-element migration of Cs(I), Be(II), Ni(II), Se(VI), Mo(VI), and U(VI) through 2 crushed granite and biotite gneiss in Korean Ca-HCO3-SO4 type groundwater under ambient atmosphere Available at: https://ssrn.com/abstract=4627799
  67. Lee, S.Y. and Tank, R.W. (1985) Role of Clays in the Disposal of Nuclear Waste: A Review. Applied Clay Science, v.1, p.145-162. doi: 10.1016/0169-1317(85)90570-8
  68. Ma, R., Liu, C., Greskowiak, J., Prommer, H., Zachara, J. and Zheng, C. (2014a) Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone. Journal of Contaminant Hydrology, v.156, p.27-37. doi: https://doi.org/10.1016/j.jconhyd.2013.10.002
  69. Ma, R., Liu, C., Greskowiak, J., Prommer, H., Zachara, J. and Zheng, C. (2014b) Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone. Journal of Contaminant Hydrology, v.156, p.27-37. doi: https://doi.org/10.1016/j.jconhyd.2013.10.002
  70. Maher, K., Bargar, J. and Brown, G. (2013) Environmental speciation of actinides. Inorganic Chemistry, v.52 7, p.3510-3532. doi: 10.1021/ic301686d
  71. Meier, H., Zimmerhackl, E., Zeitler, G. and Menge, P. (1994) Parameter Studies of Radionuclide Sorption in Site-Specific Sediment/Groundwater Systems. doi: 10.1524/ract.1994.6667.specialissue.277
  72. Mesmer, R.E. and Baes, C.F. (1990) Review of hydrolysis behavior of ions in aqueous solutions. MRS Online Proceedings Library, v.180, p.85-96. doi: 10.1557/proc-180-85
  73. Moog, H.C., Bok, F., Marquardt, C.M. and Brendler, V. (2015) Disposal of nuclear waste in host rock formations featuring highsaline solutions - Implementation of a thermodynamic reference database (THEREDA). Applied Geochemistry, v.55, p.72-84. doi: 10.1016/j.apgeochem.2014.12.016
  74. Moon, H.S., Komlos, J. and Jaffe, P.R. (2007) Uranium reoxidation in previously bioreduced sediment by dissolved oxygen and nitrate. Environ. Sci. Technol., v.41(13), p.4587. doi: 10.1021/es063063b
  75. Mountain, B.W. and Wood, S.A. (1988a) Solubility and transport of platinum-group elements in hydrothermal solutions: thermodynamic and physical chemical constraints. In Geo-platinum 87 (pp. 57-82). Springer. doi: 10.1007/978-94-009-1353-0_8
  76. Mountain, B.W. and Wood, S.A. (1988b) Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions; a thermodynamic approach. Economic Geology, v.83(3), p.492-510. doi: 10.2113/gsecongeo.83.3.492
  77. Nakata, K., Nagasaki, S., Tanaka, S., Sakamoto, Y., Tanaka, T. and Ogawa, H. (2002) Sorption and reduction of neptunium(V) on the surface of iron oxides. Radiochim. Acta, v.90(9-11), p.665. doi: 10.1524/ract.2002.90.9-11_2002.665
  78. Nash, K.L., Cleveland, J.M. and Rees, T.F. (1988) Speciation patterns of actinides in natural waters: a laboratory investigation. Journal of Environmental Radioactivity, v.7(2), p.131-157. doi:10.1016/0265-931x(88)90004-5
  79. Noh, J.H. (2006) Mineralization environments and evaluation of resources potentials for the absorbent-functional mineral resources occurred in the coal-bearing formation of the Janggi Group. Journal of the Mineralogical Society of Korea, v.19, p. 97-207 (in Korean).
  80. Noh, J.H. and Park, H.S. (1990) Mineral diagenesis of sandstones from the Kyongsang Supergroup in Goryeong area. Journal of the Geological Society of Korea, v.26, p.371-392 (in Korean).
  81. O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003) Reduction of Uranium(VI) by Mixed Iron(II)/Iron(III) Hydroxide (Green Rust): Formation of UO2 Nanoparticles. Environ. Sci. Technol., v.37, p.727. doi: 10.1021/es0208409
  82. Poinssot, C., Ferry, C., Lovera, P., Jegou, C. and Gras, J.M. (2005) Spent fuel radionuclide source term model for assessing spent fuel performance in geological disposal. Part II: Matrix alteration model and global performance. Journal of Nuclear Materials, v.346(1), p.66-77. doi: 10.1016/j.jnucmat.2005.05.021
  83. Powell, B., Kaplan, D., Serkiz, S., Coates, J.T. and Fjeld, R. (2014) Pu(V) transport through Savannah River Site soils - an evaluation of a conceptual model of surface- mediated reduction to Pu (IV). Journal of Environmental Radioactivity, v.131, p.47-56. doi: 10.1016/j.jenvrad.2013.10.009
  84. Ragoussi, M.E. and Brassinnes, S. (2015) The NEA Thermochemical Database Project:30 years of accomplishments. Radiochimica Acta, v.103(10), p.679-685. doi: 10.1515/RACT-2015-2392
  85. Ragoussi, M.E. and Costa, D. (2019) Fundamentals of the NEA Thermochemical Database and its influence over national nuclear programs on the performance assessment of deep geological repositories. Journal of Environmental Radioactivity, v.196, p.225-231. doi: 10.1016/J.JENVRAD.2017.02.019
  86. Reeder, R., Nugent, M., Tait, C.D., Morris, D.E., Heald, S.M., Beck, K.M., Hess, W.P. and Lanzirotti, A. (2001) Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta, v.65, p.3503. doi: 10.1016/s0016-7037(01)00647-0
  87. Riedel, T. and Kubeck, C. (2018) Uranium in groundwater - A synopsis based on a large hydrogeochemical data set. Water Research, v.129, p.29-38. doi: https://doi.org/10.1016/j.watres.2017.11.001
  88. Romanchuk, A.Y., Kalmykov, S.N., Kersting, A.B. and Zavarin, M. (2016) Behaviour of plutonium in the environment. Russian Chemical Reviews, v.85(9), p.995. doi: 10.1070/rcr4602
  89. Roy, S.B. and Dzombak, D.A. (1996) Colloid release and transport processes in natural and model porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.107, p.245-262. doi: 10.1016/0927-7757(95)03367-x
  90. Ryan, J.N. and Elimelech, M. (1996) Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.107, p.1-56. doi: https://doi.org/10.1016/0927-7757(95)03384-X
  91. Sadekin, S., Zaman, S., Mahfuz, M. and Sarkar, R. (2019) Nuclear power as foundation of a clean energy future: A review. Energy Procedia, v.160, p.513-518. doi: 10.1016/J.EGYPRO.2019.02.200
  92. Sagong, H., Kwon, S.-T. and Ree, J.-H. (2005) Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, v.24(5). doi: https://doi.org/10.1029/2004TC001720
  93. Sanchez, A.L., Murray, J.W. and Sibley, T.H. (1985) The adsorption of plutonium-IV and plutonium-V on goethite. Geochim. Cosmochim. Acta, v.49(11), p.2297. doi: 10.1016/0016-7037(85)90230-3
  94. Senko, J.M., Istok, J.D., Suflita, J.M. and Krumholz, L.R. (2002) Insitu evidence for uranium immobilization and remobilization. Environ. Sci. Technol., v.36(7), p.1491. doi: 10.1021/es011240x
  95. Silva, R.J., Nitsche, H. and Hoffman, D.C. (2002) Advances in Plutonium Chemistry 1967-2000.
  96. Smith, K.F., Bryan, N.D., Swinburne, A.N., Bots, P., Shaw, S., Natrajan, L.S., Mosselmans, J.F.W., Livens, F.R. and Morris, K. (2015) U(VI) behaviour in hyperalkaline calcite systems. Geochimica et Cosmochimica Acta, v.148, p.343-359. doi:10.1016/j.gca.2014.09.043
  97. Stewart, B., Mayes, M. and Fendorf, S. (2010) Impact of uranylcalcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environmental Science & Technology, v.44 3, p.928-934. doi: 10.1021/es902194x
  98. Suksi, J., Tullborg, E.-L., Pidchenko, I., Krall, L., Sandstrom, B., Kaksonen, K., Vitova, T., Kvashnina, K.O. and Gottlicher, J. (2021) Uranium remobilisation in anoxic deep rock-groundwater system in response to late Quaternary climate changes - Results from Forsmark, Sweden. Chemical Geology, v.584, p.120551. doi: https://doi.org/10.1016/j.chemgeo.2021.120551
  99. Sung, K.Y., Yun, S.T., Park, M.E., Koh, Y.K., Choi, B.Y., Hutcheon, I. and Kim, K.H. (2012) Reaction path modeling of hydrogeochemical evolution of groundwater in granitic bedrocks, South Korea. Journal of Geochemical Exploration, v.118, p.90-97. doi: 10.1016/J.GEXPLO.2012.05.004
  100. Tao, Z. and Dong, W. (2003) Additivity rule and its application to the sorption of radionuclides on soils. Radiochim. Acta, v.91, p.303. doi: 10.1524/ract.91.5.299.20310
  101. Torstenfelt, B., Eliasson, T., Allard, B., Andersson, K., Hoglund, S., Ittner, T. and Olofsson, U. (1982) Radionuclide Migration into Natural Fracture Surfaces of Granitic Rock. MRS Proceedings, v.15. doi: 10.1557/PROC-15-339
  102. Tyutyunnik, O.A., Kubrakova, I.V. and Pryazhnikov, D.V. (2016) Formation and sorption behavior of the palladium thiosulfate complexes under natural conditions (model experiments). Geochemistry International, v.54(1), p.85-91. doi: 10.1134/S0016702915110063
  103. Waite, T.D., Davis, J.A., Payne, T.E., Waychunas, G.A. and Xu, N. (1994) Uranium adsorption to ferrihydrite: Application of a surface complexation model. Geochim. Cosmochim. Acta, v.58, p.5478. doi: 10.1016/0016-7037(94)90243-7
  104. Wallin, B. and Peterman, Z. (1999) Calcite fracture fillings as indicators of paleohydrology at Laxemar at the Aspo Hard Rock Laboratory, southern Sweden. Applied Geochemistry, v.14(7), p.953-962. doi: 10.1016/S0883-2927(99)00028-1
  105. Wilkinson, K.J. and Lead, J.R. (2007) Environmental colloids and particles: behaviour, separation and characterisation. John Wiley & Sons. doi: 10.1002/9780470024539
  106. Wood, S.A. and Cabri, L.J. (2002) The aqueous geochemistry of the platinum-group elements with applications to ore deposits. The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements, v.54, p.211-249.
  107. Wood, S.A., Mountain, B.W. and Fenlon, B.J. (1989) Thermodynamic constraints on the solubility of platinum and palladium in hydrothermal solutions; reassessment of hydroxide, bisulfide, and ammonia complexing. Economic Geology, v.84(7), p.2020-2028. doi: 10.2113/gsecongeo.84.7.2020
  108. Wood, S.A., Mountain, B.W. and Pan, P. (1992) The aqueous geochemistry of platinum, palladium and gold; recent experimental constraints and a re-evaluation of theoretical predictions. The Canadian Mineralogist, v.30(4), p.955-982.
  109. Yu, S., Kwon, J.-S., Do, H.-K., Chae, G., Park, J., Park, S., Choi, J. and Yun, S.-T. (2023) Hydrochemical and isotopic comparison of crystalline bedrock aquifers in two geological disposal research sites in South Korea using samples collected during and after borehole drilling. Applied Geochemistry, v.149, p.105560. doi: https://doi.org/10.1016/j.apgeochem.2023.105560
  110. Zachara, J.M., Serne, J., Freshley, M., Mann, F., Anderson, F., Wood, M., Jones, T. and Myers, D. (2007) Geochemical Processes Controlling Migration of Tank Wastes in Hanford's Vadose ZoneAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Vadose Zone Journal, v.6(4), p.985-1003. doi: 10.2136/vzj2006.0180
  111. Zanker, H. and Hennig, C. (2014) Colloid-borne forms of tetravalent actinides: a brief review. Journal of Contaminant Hydrology, v.157, p.87-105. doi: 10.1016/j.jconhyd.2013.11.004
  112. Zhao, P., Begg, J.D., Zavarin, M., Tumey, S., Williams, R., Dai, Z., Kips, R. and Kersting, A. (2016) Plutonium(IV) and (V) Sorption to Goethite at Sub-Femtomolar to Micromolar Concentrations: Redox Transformations and Surface Precipitation. Environmental Science & Technology, v.50 13, p.6948-6956. doi: 10.1021/acs.est.6b00605