Reactions of As(V) with Fe(II) under the Anoxic Conditions

무산소 조건에서의 Fe(II)와 As(V)의 반응에 관한 연구

  • Jung, Woo-Sik (Department of Environmental Engineering, Yonsei University) ;
  • Lee, Sang-Hun (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Chung, Hyung-Keun (Department of Environmental Engineering, Yonsei University) ;
  • Kim, Sun-Joon (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Choi, Jae-Young (Korea Institute of Science and Technology (KIST), Gangneung Institute) ;
  • Jeon, Byong-Hun (Department of Environmental Engineering, Yonsei University)
  • 정우식 (연세대학교 환경공학부) ;
  • 이상훈 (한양대학교 지구환경시스템공학과) ;
  • 정형근 (연세대학교 환경공학부) ;
  • 김선준 (한양대학교 지구환경시스템공학과) ;
  • 최재영 (한국과학기술원 강릉분원) ;
  • 전병훈 (연세대학교 환경공학부)
  • Published : 2009.10.28

Abstract

The purpose of this study was to investigate the feasibility of As(V) reduction by aqueous Fe(II), and subsequent As(III) immobilization by the precipitation of As(III) incorporated magnetite-like material [i.e., co-precipitation of As(III) with Fe(II) and Fe(III)]. Experimental results showed that homogeneous As(V) reduction did not occur by dissolved Fe(II) at various pH values although the thermodynamic calculation was in favor of the redox reaction between As(V) and Fe(II) under the given chemical conditions. Similarly, no heterogeneous reduction of sorbed As(V) by sorbed Fe(II) was observed using synthetic iron (oxy)hydroxide (Goethite, ${\alpha}$-FeOOH) at pH 7. Experimental results for the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen showed that As(V) inhibited the oxidation of Fe(II). These results indicate that As(V) could be stable in the presence of Fe(II) under the anoxic or subsurface environments.

본 연구에서는 무산소 환경에서 As(III)로 대체된 자철석으로의 침전 가능성을 확인하기 위하여 Fe(II)와 As(V)의 반응을 통한 As(V)의 As(III)로의 환원 여부를 조사하였다. Fe(II)와 As(V)가 용액상으로 존재하는 균질조건에서의 환원반응 실험은 pH에 따른 영향을 알아보기 위해 수행되었고, 주어진 pH 조건(3.0~7.3)에서 용해된 Fe(II)에 의한 As(V)의 As(III)로의 환원반응은 일어나지 않았다. 균질조건에서의 환원반응 실험결과와 유사하게 침철석을 이용한 불균질조건에서의 환원반응 실험에서도 침철석에 흡착된 Fe(II)에 의한 As(V)의 환원반응은 일어나지 않았다. 또한 Fe(II)의 산화에 미치는 As(V)의 영향에 대한 회분식 실험결과, As(V)가 Fe(II)의 산화반응을 저해하는 영향을 주었고 균질한 조건에서보다 불균질한 조건에서 As(V)의 영향이 명확하게 나타난 것으로 사료된다. 이런 결과들은 무산소 및 지하 환경에서 Fe(II)와 공존할 때, As(V)는 안정한 상태로 존재함을 시사한다.

Keywords

References

  1. Ahmad, S.A., Bandaranayake, D., Khan, A.W., Hadi, S.A., Uddin, G. and Halim, M.A. (1997) Arsenic contamination in ground water and arsenicosis in Bangladesh. Int. J. of Environ. Health Research, v.7, p.217-276
  2. Bang, S.B., Johnson, M.D., Korfiatis, G.P. and Meng, X. (2005a) Chemical reactions between arsenic and zerovalent iron in water. Water Res., v.39, p.763-770 https://doi.org/10.1016/j.watres.2004.12.022
  3. Bang, S.B., Korfiatis, G.P. and Meng, X. (2005b) Removal of arsenic from water by zero-valent iron. J. of Haz. Mat., v.121, p.61-67 https://doi.org/10.1016/j.jhazmat.2005.01.030
  4. Boccelli, D.L., Small, M.J. and Dzombak, D.A. (2005) Enhanced coagulation for satisfying the arsenic maximum contaminant level under variable and uncertain conditions. Environ. Sci. Technol., v.39, p.6501-6507 https://doi.org/10.1021/es050048i
  5. Buchet, J.P. and Lauwerys, R. (1994) Interpretation of inorganic arsenic metabolism in humans in the light of observations made in vitro and in vivo in the rat. Appl. Oranomet. Chem., v.8, p.191-196 https://doi.org/10.1002/aoc.590080306
  6. Cullen, W.R. and Reimer, K.J. (1989) Arsenic speciation in the environment. Chem. Rev., v.89, p.713-764 https://doi.org/10.1021/cr00094a002
  7. Dixit, S. and Hering, J.G. (2003) Comparison of As(V) and As(III) sorption onto iron oxide minerals: Implication for arsenic mobility. Environ. Sci. Technol., v.37, p.4182-4189 https://doi.org/10.1021/es030309t
  8. Duff, M.C., Coughlin, J.U. and Hunter, D.B. (2002) Uranium co-precipitation with iron oxide minerals. Geochim. Cosmochim. Aacta, v.66, p.533-3547
  9. Fendorf, S.E. and Li, G. (1996) Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol., v.30, p.1614-1617 https://doi.org/10.1021/es950618m
  10. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Kukkadapu, R.K., McKinley, J.P., Heald, S.M., Liu, C. and Plymale, A.E. (2004) Reduction of $TcO_4$− by sedimentassociated biogenic Fe(II). Geochim. Cosmochim. Acta, v.68, p.3171-3187 https://doi.org/10.1016/j.gca.2003.10.024
  11. Jeon, B.H., Dempsey, B.A. and Burgos, W.D. (2003) Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environ. Sci. Technol., v.37, p.3309- 3315 https://doi.org/10.1021/es025900p
  12. Jeon, B.H., Dempsey, B.A., Burgos, W.D. and Royer, R.A. (2004) Low-temperature oxygen trap for maintaining strict anoxic environment. J. Environ. Eng.(ASCE), v.130, p.1407-1410 https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1407)
  13. Jeon, B.H., Dempsey, B.A., Burgos, W.D., Barnett, M.O. and Roden E.E. (2005) Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environ. Sci. Technol., v.39, p.5642-5649 https://doi.org/10.1021/es0487527
  14. Johnston, R.B. and Singer P.C. (2007a) Redox reactions in the Fe-As-$CO_{2}$ system. Chemosphere, v.69, p.517-525 https://doi.org/10.1016/j.chemosphere.2007.03.036
  15. Johnston, R.B. and Singer P.C. (2007b) Solubility of symplesite (ferrous arsenate): implications for reduced groundwaters and other geochemical environments. Soil Sci. Soc. Am. J., v.71, p.101-107 https://doi.org/10.2136/sssaj2006.0023
  16. Liger, E., Charlet, L. and Van Cappellen, P. (1999) Surface catalysis of uranium(VI) reduction by iron(II)-spectroscopic evidence for sorption and reduction. Geochim. Cosmochim. Acta, v.63, p.2939-2955 https://doi.org/10.1016/S0016-7037(99)00265-3
  17. Luther, G.W. (1987) Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochim.Cosmochim. Acta, v.51, p.3193-3199 https://doi.org/10.1016/0016-7037(87)90127-X
  18. Refait, P., Girault P., Jeannin M. and Rose J. (2009) Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(II-III) hydroxychloride. Colloids and Surfaces A: Physicochem. Eng. Aspects, v.332, p.26-35 https://doi.org/10.1016/j.colsurfa.2008.08.020
  19. Richmond, W.R., Loan, M., Morton, J. and Parkinson, G.M. (2004) Arsenic removal from aqueous solution via ferrihydrite crystallization control. Environ. Sci Technol., v.38, p.2368-2372 https://doi.org/10.1021/es0353154
  20. Samanta, G. and Clifford, D.A. (2005) Preservation of inorganic arsenic species in groundwater. Environ. Sci. Technol., v.39, p.8877-8882 https://doi.org/10.1021/es051185i
  21. Sedlak, D.L. and Chan, P.G. (1997) Reduction of hexavalent chromium by ferrous iron. Geochim. Cosmochim. Acta, v.61, p.2185-2192 https://doi.org/10.1016/S0016-7037(97)00077-X
  22. Stumm, W. and Sulzberger, B. (1992) The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes. Geochim. Cosmochim. Acta, v.56, p.3233-3257 https://doi.org/10.1016/0016-7037(92)90301-X
  23. Su, C. and Puls, R.W. (2004) Significance of iron(II-III) hydroxycarbonate green rust in arsenic remediation using zero-valent iron in laboratory column tests. Environ. Sci. Technol., v.38, p.5224-5231 https://doi.org/10.1021/es0495462
  24. Thoral, S., Rose, J., Garnier, J. M., Geen, A. C., Refait, P., Traverse, A., Fonda, E., Nahon, D. and Bottero, J. Y. (2005) XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). Environ. Sci. Technol., v.39, p.9478-9485 https://doi.org/10.1021/es047970x
  25. Xu, H., Allard, B. and Grimvall, A. (1991) Effects of acidification and national organic materials on the mobility of arsenic in the environment. Water Air Soil Pollution, v.57, p.269-278 https://doi.org/10.1007/BF00282890
  26. Zachara, J.M., Heald, S.M., Jeon, B.H., Kukkadapu, R.K., Dohnalhova, A.C., Mckinley, J.P., Moore, D.A. and Liu, C. (2007) Reduction of pertechnetate[Tc(VII)] by aqueous Fe(II) and the nature of solid phase redox products. Geochim. Cosmochim. Acta, v.71, p.2137-2157 https://doi.org/10.1016/j.gca.2006.10.025
  27. Yan, X.P., Kerrich, R. and Hendry, M.J. (2000) Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence. Geochim. Cosmochim. Acta v.64, p.2637-2648 https://doi.org/10.1016/S0016-7037(00)00380-X