Determination of Mn Oxidation State in Mn-(hydr)oxides using X-ray Photoelectron Spectroscopy(XPS)

X-선 광전자 분광법을 이용한 망간산화물의 망간 산화상태 해석

  • Song, Kyung-Sun (Department of Earth System Sciences, Yonsei University) ;
  • Bae, Jong-Seong (Nano-Surface Technology Research Team, Busan Center, Korea basic Science Institute (KBSI)) ;
  • Lee, Gie-Hyeon (Department of Earth System Sciences, Yonsei University)
  • 송경선 (연세대학교 지구시스템과학과) ;
  • 배종성 (한국기초과학지원연구원) ;
  • 이기현 (연세대학교 지구시스템과학과)
  • Published : 2009.10.28

Abstract

In natural environments, manganese (Mn) exists in the valence of +2, +3, and +4 and plays a pivotal role as a strong oxidant or reductant in the geochemical cycles of elements. Especially, Mn forms varying (oxyhydr)oxides. The oxidation state of structural Mn is characteristic to each oxide and is one of the most important factors controlling its geochemical behaviors such as solubility, sorption capacity, and redox potential. Therefore, it is important to elucidate processes governing Mn oxidation state in predicting the fate and transport of many redox sensitive elements in the environment. X-ray photoelectron spectroscopy (XPS) is a very useful method to determine the oxidation state of various elements in solid phases. In this study, the oxidation states of structural Mn in MnO, $Mn_2O_3$, $MnO_2$ were assessed based on the binding energy spectra of $Mn2p_{3/2}$ and Mn3s using XPS and were compared with those reported elsewhere. $Mn2p_{3/2}$ binding energies were determined as 640.9, 641.5, 641.8 eV for MnO, $Mn_2O_3$, $MnO_2$, respectively, which indicates that the binding energy increased with increasing Mn oxidation state. It was also noted that Ar etching may cause changes in electronic structure configuration on surface of the original sample.

자연환경에서 망간은 +2, +3, +4가의 다양한 산화수로 존재하며 환경적으로 중요한 여러 원소들과 활발한 산화/환원반응을 함으로써 원소의 지화학적 순환에 중요한 역할을 하고 있다. 특히 망간은 다양한 산화물로 존재하며 각각 특징적인 망간의 산화상태를 나타내고 있다. 망간산화물의 지화학적 특성, 즉 망간산화물의 용해도, 흡착력, 산화/환원 능력은 산화물을 구성하는 망간의 산화수에 의해 크게 좌우되는 것으로 알려져 있다. 따라서 망간의 산화수를 결정하는 인자를 밝히는 것이 산화/환원에 민감한 여러 오염원소의 지화학적 거동을 예측하는 데 매우 중요하다. X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)은 고체상으로 존재하는 다양한 원소의 산화상태를 밝히는데 매우 유용한 도구이다. 본 연구에서 MnO, $Mn_2O_3$, $MnO_2$에 대한 망간의 산화수를 결정하기 위해 XPS $Mn2p_{3/2}$와 Mn3s 결합에너지 스펙트럼을 측정하여 기존에 보고 된 값들과 비교하였다. 망간산화물에 대한 $Mn2p_{3/2}$ 결합에너지는 MnO, 640.9 eV; $Mn_2O_3$, 641.5 eV; $MnO_2$, 641.8 eV로서, 망간의 산화수가 증가할수록 $Mn2p_{3/2}$ 의 결합에너지가 증가하는 것으로 나타났다. 시료준비 방법 중 하나인 Ar 에칭의 경우 시료 표면의 전자구조를 변화시킬 수 있는 가능성이 확인되었다.

Keywords

References

  1. Banerjee, D. and Nesbitt, H.W. (2000) XPS study of reductive dissolution of birnessite by $H_2SeO_3$ with constraints on reaction mechanism. American Mineralogist, v.85, p.817-825 https://doi.org/10.2138/am-2000-5-624
  2. Carver, J.C., Schweitzer, G.k. and Carlson, T.A. (1972) Use of X-ray photoelectron spectroscopy to study bonding in Cr, Mn, Fe, and Co compounds. The Journal of Chemical Physics, v.57, p.973-982 https://doi.org/10.1063/1.1678348
  3. Clark, D.T. and Dilks, A. (1979) ESCA applied to polymers. XXIII. RF glow discharge modification of polymers in pure oxygen and helium-oxygen mixtures. Journal of Polymer Science: Polymer Chemistry Edition, v.17, p.957-976 https://doi.org/10.1002/pol.1979.170170404
  4. Clark, D.T. and Dilks, A. (1979) ESCA applied to polymers. XXIII. RF glow discharge modification of polymers in pure oxygen and helium-oxygen mixtures. Journal of Polymer Science: Polymer Chemistry Edition, v.17, p.957-976 https://doi.org/10.1002/pol.1979.170170404
  5. Clark, D.T. and Thomas, H.R. (1978) Applications of ESCA to polymer chemistry. XVII. Systematic investigation of the core levels of simple homopolymers. Journal of Polymer Science: Polymer Chemistry Edition, v.16, p.791-820 https://doi.org/10.1002/pol.1978.170160407
  6. Chiu, V.Q. and Hering, J.G. (2000) Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species. Environ. Sci. Technol., v.34, p.2029-2034 https://doi.org/10.1021/es990788p
  7. Gupta, R.P. and Sen, S.K. (1974) Calculation of multiplet structure of core p-vacancy levels. Physical Review B, v.10, p.71-77 https://doi.org/10.1103/PhysRevB.10.71
  8. Gupta, R.P. and Sen, S.K. (1975) Calculation of multiplet structure of core p-vacancy levels. II. Physical Review B, v.12, p.15-19 https://doi.org/10.1103/PhysRevB.12.15
  9. Foster, A.L., Brown, G.E. and Parks, G.A. (2003) X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochimica et Cosmochimica Acta, v.67, p.1937-1953 https://doi.org/10.1016/S0016-7037(02)01301-7
  10. Hochella, M.F., Lindsay, J.R., Mossotti, V.G. and Eggleston, C.M. (1988) Sputter depth profiling in mineralsurface analysis. American Mineralogist, v.73, p.1449-1456
  11. Junta, J.L. and Hochella, M.F. (1994) Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochimica et Cosmochimica Acta, v.58, p.4985-4999 https://doi.org/10.1016/0016-7037(94)90226-7
  12. Manceau A., Charlet, L., Boisset, M.C., Didier, B. and Spadini, L. (1992) Sorption and speciation of heavy metals on hydrous Fe and Mn oxides. From microscopic to macroscopic. Applied Clay Science, v.7, p.201-223 https://doi.org/10.1016/0169-1317(92)90040-T
  13. Mathez, E.A. (1987) Carbonaceous matter in mantle xenoliths: Composition and relevance to the isotopes. Geochimica et Cosmochimica Acta, v.51, p.2339-2347 https://doi.org/10.1016/0016-7037(87)90288-2
  14. Murray, J.W., Dillard J.G., Giovanoli, R., Moers, H. and Stumm, W. (1985) Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochimica et Cosmochimica Acta, v.49, p.463-470 https://doi.org/10.1016/0016-7037(85)90038-9
  15. Nesbitt, H.W., Canning, G.W. and Bancroft, G.M. (1998) XPS study of reductive dissolution of 7${\aA}$ birnessite by $H_3AsO_3$ with constraints on reaction mechanism. Geochimica et Cosmochimica Acta, v.62, p.2097-2110 https://doi.org/10.1016/S0016-7037(98)00146-X
  16. Nesbitt, H.W. and Banerjee, D. (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of $MnO_2$ precipitation. American Mineralogist, v.83, p.305-315
  17. Oku, M. and Hirokawa, K. (1976) X-ray photoelectron spectroscopy of $Co_3O_4, Fe_3O_4$, and related compounds. Journal of Electron Spectroscopy and Related Phenomena, v.8, p.475-481 https://doi.org/10.1016/0368-2048(76)80034-5
  18. Oku, M., Hirokawa, K. and Ikeda, S. (1975) X-ray photoelectron spectroscopy of manganese-oxygen systems. Journal of Electron Spectroscopy and Related Phenomena, v.7, p.465-473 https://doi.org/10.1016/0368-2048(75)85010-9
  19. Ouvrard, S., De Donato, P., Simonnot, M.O., Begin, S., Ghanbaja, J., Alnot, M., Duval, Y.B., Lhote, F., Barres, O. and Sardin, M. (2005) Natural manganese oxide: Combined analytical approach for solid characterization and arsenic retention. Geochimica et Cosmochimica Acta, v.69, p.2715-2724 https://doi.org/10.1016/j.gca.2004.12.023
  20. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, v.17, p.517- 568 https://doi.org/10.1016/S0883-2927(02)00018-5
  21. Sripp, S.L. and Hochella, M.F. (1991) Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochimica et Cosmochimica Acta, v.55, p.1723-1736 https://doi.org/10.1016/0016-7037(91)90142-R
  22. Swift, P. (1982) Adventitious carbon - the panacea for energy referencing? Surface and Interface Analysis, v.4, p.47-51 https://doi.org/10.1002/sia.740040204
  23. Wagner, C.D. and Muilenberg, G.E. (1979) Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn
  24. Wang, Y. and Stone A.T. (2006) Reaction of $Mn^{III,IV}$ (hydr)oxides with oxalic acid, glyoxylic acid, phosphonoformic acid, and structurally-related organic compounds
  25. Wertheim, G.K., Hufner, S. and Guggenheim, H.J. (1973) Systematics of core-electron exchange splitting in 3dgroup transition-metal compounds. Physical Review B, v.7, p.556-558 https://doi.org/10.1103/PhysRevB.7.556