Phosphate Sorption on Boehmite with Eu(III): P K-edge EXAFS Fingerprinting

뵈마이트 표면의 인산염 및 Eu(III) 수착: 인(P) X-선 흡수분석(EXAFS)에 의한 연구

  • Yoon, Soh-Joung (Soil and Groundwaer Academy, Korea Environmental Industry & Technology Institute) ;
  • Bleam, William F. (Department of Soil Science, University of Wisconsin)
  • 윤소정 (한국환경산업기술원 토양지하수아카데미) ;
  • Published : 2009.10.28

Abstract

Actinide sorption to the geological materials can reduce the mobility and bioavailability of radionuclides released to the environment through the development of nuclear weapons and nuclear energy. Under circumneutral pH conditions, actinide sorption can be enhanced by phosphate anions sorbed on oxide mineral surfaces as indicated by the sorption of trivalent lanthanide ions ($Ln^{3+}$), the chemical analog for trivalent actinide ions ($Ac^{3+}$). In this paper, we examined a ternary sorption system of trivalent europium ions ($Eu^{3+}$) sorbed onto boehmite (${\gamma}$-AlOOH) surfaces pre-sorbed with phosphate anions (${PO_4}^{3-}$), using extended X-ray absorption fine structure (EXAFS) spectroscopy. In the Eu-$PO_4$-boehmite ternary sorption system, $EuPO_4$ surface precipitates were formed as implicated by Eu $L_{III}$-edge EXAFS spectroscopy. Phosphorus K-edge EXAFS fingerprinting indicated a bidentate mononuclear surface complex formation of phosphate sorbed on boehmite surfaces as well as $EuPO_4$ surface precipitate formation.

액티나이드(actinide)의 지질물질로의 수착은 핵에너지와 핵무기 개발로 인하여 인위적으로 자연환경에 노출된 핵종 원소의 이동성과 생물이용가능성을 낮추어 줄 수 있을 것으로 기대된다. 3가의 액티나이드 이온은 3가의 란타나이드(lanthanide) 이온과 유사한 화학적 성질을 띠므로, 3가 액티나이드의 산화광물 표면수착량은, 중성 또는 약한 산성의 pH 상태에서 3가의 란타나이드처럼, 인산염 이온(${PO_4}^{3-}$) 이 수착된 상태에서 크게 증가될 것으로 사료된다. 본 연구에서는 3가액티나이드 이온의 화학적 동족체인 3가 유로피움 이온($Eu^{3+}$)이 인산염이 수착된 상태의 뵈마이트 (${\gamma}$-AlOOH; boehmite) 표면에 수착되는 삼성분 수착계를 X선 흡수분석(EXAFS)을 통하여 관찰하였다. Eu X-선 흡수분석은 Eu-$PO_4$-뵈마이트 삼성분 수착계에서 뵈마이트 표면에 $EuPO_4$ 표면침전물이 형성되는 것을 지시하여 준다. 인산염이 뵈마이트 표면에서 $EuPO_4$ 표면침전물을 형성할 뿐 아니라 두자리 단핵 표면착물을 형성한 것을 P X-선 흡수분석을 통하여 확인하였다.

Keywords

References

  1. Ankudinov, A.L., Bouldin, C., Rehr, J.J., Sims,J. and Hung, H. (2002) Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys. Rev. B, v.65, 104107 https://doi.org/10.1103/PhysRevB.65.104107
  2. Bleam, W.F., Pfeffer, P.E., Goldberg, S., Taylor, R. W. and Dudley, R. (1991) A P-31 solid-state nuclear-magneticresonance study of phosphate adsorption at the boehmite aqueous-solution interface. Langmuir, v.7, p.1702-1712 https://doi.org/10.1021/la00056a023
  3. Bouldin C., Furenlid L. and Elam T. (1995) MacXAFS: An EXAFS analysis package for the Macintosh. Physica B.,v.208/209, p.190-192 https://doi.org/10.1016/0921-4526(94)01012-P
  4. Bradbury, M.H. and Baeyens, B. (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modeling with cation exchange and surface complexation. Geochim. Cosmochim. Acta, v.66, p.2325- 2334 https://doi.org/10.1016/S0016-7037(02)00841-4
  5. Brese N. E. and O'Keeffe M. (1991) Bond-valence parameters for solids. Acta Cryst., v.B47, p.192-197 https://doi.org/10.1107/S0108768190011041
  6. Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. In O'Keeffe, M. and Navrotsky, A.(eds.) Structure and Bonding in Crystals, Vol. 2, Academic Press, New York, p.1-30
  7. Choppin, G.R. (1995) Comparitive solution chemistry of the 4f and 5f elements. J. Alloys Compd., v.223, p.174-179 https://doi.org/10.1016/0925-8388(94)09002-5
  8. Farkas, L., Gado, P. and Werner, P.-E. (1977) Structure refinement of bohmite (gamma-AlOOH) and study of its structural variability based on Guinier-Hagg powder data. Mater. Res. Bull., v.12, p.1213-1219 https://doi.org/10.1016/0025-5408(77)90176-3
  9. Gieselmann, M.J. and Anderson, M.A. (1989) Effect of ionic-strength on boehmite hydrogel formation. J. Am. Ceram. Soc., v.72, p.980-985 https://doi.org/10.1111/j.1151-2916.1989.tb06255.x
  10. Guo, Z., Xu, J., Shi, K., Tang, Y., Wu, W. and Tao, Z. (2009) Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloid. Surface. A, v.339, v.126-133 https://doi.org/10.1016/j.colsurfa.2009.02.007
  11. Ishida, K., Kimura, T., Saito, T. and Tanaka, S. (2009) Adsorption nof Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM). Environ. Sci. Technol., v.43, p.1744-1749 https://doi.org/10.1021/es8024287
  12. Khare, N., Martin, J.D. and Hesterberg, D. (2007) Phosphate bonding configuration on ferrihydrite based on molecular orbital calculations and XANES fingerprinting. Geochim. Cosmochim. Acta, v.71, p.4405-4415 https://doi.org/10.1016/j.gca.2007.07.008
  13. Kim, M.A., Panak, P.J., Yun, J.I., Kim, J.I., Klenze, R. and Kohler, K. (2003) Interaction of actinides with aluminosilicate colloids in statu nascendi. Part I: generation and characterization of actinide(III)-pseudocolloids. Colloid. Surface. A, v.216, p.97-108 https://doi.org/10.1016/S0927-7757(02)00501-0
  14. Krauskopf, K.B. (1986) Thorium and rare-earth metals as analogs for actinide elements. Chem. Geol., v.55, p.323-335 https://doi.org/10.1016/0009-2541(86)90033-1
  15. Lee, S.-G., Lee, K.Y., Cho, S.Y., Yoon, Y.Y. and Kim, Y. (2006) Sorption properties of 152Eu and 241Am in geological materials: Eu as an analogue for monitoring the Am behavior in heterogeneous geological environments. Geosci. J., v.10, p.103-114 https://doi.org/10.1007/BF02910354
  16. Luengo, C., Brigante, M., Antelo, J. and Avena, M. (2006) Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J. Colloid Interf. Sci., v.300, p.511-518 https://doi.org/10.1016/j.jcis.2006.04.015
  17. Lytle, F.W., Greegor, R.B., Sandstrom, D.R., Marques, E.C., Wong, J., Spiro, C.L., Huffman, G.P. and Huggins, F.E. (1984) Measurement of soft-X-ray absorption-spectra with a fluorescent ion-chamber detector. Nucl. Instrum. Meth. Phys. Res. A., v.226, p.542-548 https://doi.org/10.1016/0168-9002(84)90077-9
  18. Nanzyo, M. (1986) Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products. Soil Sci. Plant Nutr., v.32, p.51-58 https://doi.org/10.1080/00380768.1986.10557480
  19. Naveau, A., Monteil-Rivera, F., Dumonceau, J., Catalette, H. and Simoni, E. (2006) Sorption of Sr(II) and Eu(III) onto pyrite under different redox potential conditions. J. Colloid Interf. Sci., v.293, p.27-35 https://doi.org/10.1016/j.jcis.2005.06.049
  20. Ni, Y.X., Hughes, J.M. and Mariano, A.N. (1995) Crystal chemistry of the monazite and xenotime structures. Amer. Mineral., v.80, p.21-26
  21. Rabung, T., Pierret, M.C., Bauer, A. Geckies, H., Bradbury, M.H. and Baeyens, B. (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorilonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta, v.69, p.5393-5402 https://doi.org/10.1016/j.gca.2005.06.030
  22. Rabung, T., Stumpf, T., Geckeis, H., Klenze, R. and Kim, J.I. (2000) Sorption of Am(III) and Eu(III) onto gammaalumina: experiment and modeling. Radiochim. Acta, v.88, p.711-716 https://doi.org/10.1524/ract.2000.88.9-11.711
  23. Sakuragi, T., Sato, S., Kozaki, T., Mitsugashira, T., Hara, P. and Suzuki, Y. (2004) Am(III) and Eu(III) uptake on hematite in the presence of humic acid. Radiochim. Acta, v.92, p.697-702 https://doi.org/10.1524/ract.92.9.697.54978
  24. Stumpf, T., Curtius, H., Walther, C., Dardenne, K., Ufer, K. and Fanghanel, T. (2007) Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study. Environ. Sci. Technol. 41, 3186-3191 https://doi.org/10.1021/es0624873
  25. Takahashi, Y., Kimura, T., Kato, Y., Minai, Y. and Tominaga, T. (1998) Characterization of Eu(III) species sorbed on silica and montmorillonite by laser-induced fluorescence spectroscopy. Radiochim. Acta, v.82, p.227-232
  26. Takahashi, Y., Murata, M. and Kimura, T. (2006) Interaction of Eu(III) ion and non-porous silica: irreversible sorption of Eu(III) on silica and hydrolysis of silica promoted by Eu(III). J. Alloy. Compd., v.408-412, p.1246-1251 https://doi.org/10.1016/j.jallcom.2005.04.120
  27. Tan, X.L., Wang, X.K., Geckeis, H. and Rabung, T. (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ. Sci. Technol., v.42, p.6532-6537 https://doi.org/10.1021/es8007062
  28. Tan, X., Fang, M., Li, J., Lu, Y. and Wang, X. (2009a) Adsorption of Eu(III) onto $TiO_2$: Effect of pH, concentration, ionic strength and soil fulvic acid. J. Hazard. Mater., v.168, p.458-465 https://doi.org/10.1016/j.jhazmat.2009.02.051
  29. Tan, X., Fan, Q., Wang, X. and Grambow, B. (2009b) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ. Sci. Technol., v.43, p.3115-3121 https://doi.org/10.1021/es803431c
  30. Xu, D., Ning, Q.L., Zhou, X., Chen, C.L., Tan, X.L., Wu, A.D. and Wang, X. (2005) Sorption and desorption of Eu(III) on alumina. J. Radioanal. Nucl. Ch., v.266, p.419-424 https://doi.org/10.1007/s10967-005-0926-z
  31. Yang H., Lu R., Downs R.T. and Costin G. (2006) Goehthite, alpha-FeO(OH), from single-crystal data. Acta Cryst., v.E62, p.I250-I252
  32. Yoon, S., Helmke, P.A., Amonete, J.E. and Bleam, W.F. (2002) X-ray absorption and magnetic studies of trivalent lanthanide ions sorbed on pristine and phosphatemodified boehmite surfaces. Langmuir, v.18, p.10128-10136 https://doi.org/10.1021/la0202226