Single-walled Hollow Nano-tubes and Nano-balls Assembled from the Aluminogermanante Precursors

Aluminogermanate Precursor의 자기조합(Self-assembly)을 통한 단일 벽을 갖는 나노-볼형 및 나노-튜브형 광물 유도

  • 송윤구 (연세대학교 지구시스템과학과) ;
  • ;
  • 이영부 (한국기초과학지원연구원 전주센터)
  • Published : 2009.10.28

Abstract

Ordered single-walled hollow aluminogermanate (ALGE) nano-balls(NBs) and nano-tubes(NTs) have been self-assembled from the ALGE precursors having an Al/Ge ratio of 1.33 using simple pH-control. The hollow ALGE NBs with average monodisperse diameters of 5 nm and chemistry of Al/Ge=1.5~1.6 were formed through structural assembly in the ALGE solution (Al/Ge=1.33) highly basified to pH=13(Na/Al=28~30) and followed by immediate acidification to pH=9. When the basified solution(pH=13) were acidified to pH=4, ALGE S-NTs (Short-fiber nano-tubes) with diameters of 3.3 nm, 15~20 nm in length, and chemistry of Al/Ge=2.6~2.8 were successfully synthesized. Whereas the solution was basified to pH=9, and subsequently acidified to pH=4, L-NTs(Long-fiber nano-tubes) with >100 nm in length were synthesized for the first time. The self-assembly of the hollow NBs, S-NTs, and L-NTs form the ALGE precursors can be explained by the degree of $H^+$-dissociation of the -Ge-OH inner surfaces, which was controlled by amount of $Na^+$ and pH conditions of ALGE precursor solutions. This results indicate that target forms of ALGE nanomaterials can be synthesized by simple pH controls.

본 연구에서는 단일 벽(Single-wall) 구조를 갖는 나노크기의 속이 빈(hollow) 볼(Ball)형(NBs; Nano-balls), 짧은 길이 튜브(S-NTs; Short-fiber Nano-tubes)형 및 긴 길이 튜브(L-NTs; Long-fiber Nano-tubes) 물질을 동일한 조성 Al/Ge=1.33을 갖는 Aluminogermanate(ALGE) Precursor 최초 혼합용액의 단순한 pH 조절 과정에서 자기조합(Self-assembly)을 통해 성공적으로 합성하였다. 먼저 pH=13으로의 염기성화(Na/Al=28~30) 및 최종 pH=9 조건에서 5 nm의 균질한 크기를 갖으며, 화학조성인 Al/Ge=1.5~1.6인 속이 빈 구조의 NBs가 합성되었다. pH=13으로의 염기성화 및 최종 pH=4 조건에서는 3.3 nm 지름, 길이 15~20 nm, Al/Ge=2.6~2.8의 S-NTs가 합성되었다. 그러나 pH=9로 염기성화(Na/Al=3.8) 시킨 후 최종 pH=4조건에서는 나노-튜브의 길이가 100 nm 이상인 L-NTs가 처음으로 합성되었다. 이러한 결과는 ALGE Precursor로부터 -Ge-OH 표면에서의 $H^+$-dissociation 정도 차이, 즉, $Na^+$ 양 및 최종 pH 조건을 달리함으로써 의도하는 형태의 ALGE 나노물질 유도가 가능함을 시사한다.

Keywords

References

  1. Abidin, Z., Matsue, N. and Henmi, T. (2007) Differential formation of allophane and imogolite: experimental and molecular orbital study. J. Computer-Aided Mater. Des., v.14, p.5-18
  2. Bac, B.H., Song, Y., Kim, M.H., Lee, Y.-B. and Kang, I.M. (2009) Single-walled hollow nanospheres assembled from the aluminogermanate precursors. Chem Commun, p.5740-5742
  3. Cradwick, P.D.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K. and Yoshinaga, N. (1972) Imogolite, a hydrated aluminium silicate of tubular structure. Nature Phys. Sci., v.240, p.187-189 https://doi.org/10.1038/240187a0
  4. Farmer, V.C., Fraser, A.R. and Tait, J.M. (1977) Synthesis of imogolite. J. Chem. Soc. Chem. Common., p.462-463
  5. Henmi, T. and Wada, K. (1976) Morphology and composition of allophane. Am. Mineral., v.61, p.379-390
  6. Huang, H., Remaen, E.E., Kowalewski, T. and Wooley, K.L. (1999) Nanocages Derived from Shell Cross- Linked Micelle Templates. J. Am. Chem. Soc., v.121, p.3805-3806 https://doi.org/10.1021/ja983610w
  7. Levard, C., Rose, J., Masion, A., Doelsch, E., Borschneck, D., Olivi, L., Dominici, C., Grauby, O., Woicik, J.C. and Bottero, J.-Y. (2008) Synthesis of large quantities of single-walled aluminogermanate nanotube. J. Am. Chem. Soc., v.130, p.5862-5863 https://doi.org/10.1021/ja801045a
  8. Li, Y., Shi, J., Hua, Z., Chen, H., Ruan, M. and Yan, D. (2003) Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. Nano Lett., v.3, p.609-612 https://doi.org/10.1021/nl034134x
  9. Lin, H.-P. and Mou, C.-Y. (1996) "Tubules-Within-a- Tubule" Hierarchical Order of Mesoporous Molecular Sieves in MCM-41. Science, v.273, p.765-768 https://doi.org/10.1126/science.273.5276.765
  10. Mecking, S. and Thomann, R. (2000) Core-Shell Microspheres of a Catalytically Active Rhodium Complex Bound to a Polyelectrolyte-Coated Latex. Adv. Mater., v.12, p.953-956 https://doi.org/10.1002/1521-4095(200006)12:13<953::AID-ADMA953>3.0.CO;2-J
  11. Mukherjee, S., Bartlow, V.M. and Nair, S. (2005) Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chem. Mater., v.17, p.4900-4909 https://doi.org/10.1021/cm0505852
  12. Mukherjee, S., Kim, K. and Nair, S. (2007) Short, highly ordered, single-walled mixed-oxide nanotubes assemble from amorphous nanoparticles. J. Am. Chem. Soc., v.129, p.6820-6826 https://doi.org/10.1021/ja070124c
  13. Ohashi, F., Wada, S.-I., Suzuki, M., Maeda, M. and Tomura, S. (2002) Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid. Clay Miner., v.37, p.451-456 https://doi.org/10.1180/0009855023730052
  14. Parfitt, R.L., Furkert, R.J. and Henmi, T. (1980) Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays Clay Miner., v.28, p.328-334 https://doi.org/10.1346/CCMN.1980.0280502
  15. Rao, C.N. and Nath, M. (2003) Inorganic nanotubes. Dalton Trans., v.1, p.1-24
  16. Remskar, M. (2004) Inorganic Nanotubes. Adv. Mater., v.16, p.1497-1504 https://doi.org/10.1002/adma.200306428
  17. Schacht, S., Huo, Q., Voigt-Martin, I.G., Stucky, G.D. and Schuth, F. (1996) Oil-Water Interface Templating of Mesoporous Macroscale Structures. Science, v.273, p.768-771 https://doi.org/10.1126/science.273.5276.768
  18. Tanev, P.T., Chibwe, M. and Pinnavaita, T.J. (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, v.368, p.321-323 https://doi.org/10.1038/368321a0
  19. van der Gaast, S.J., Wada, K., Wada, S.-I. and Kakuto, Y. (1985) Small-angle X-ray powder diffraction, morphology, and structure of allophane and imogolite. Clays Clay Miner., v.33, p.237-243 https://doi.org/10.1346/CCMN.1985.0330310
  20. Wada, K., Wilson, M., Kakuto, Y. and Wada S.-I. (1988) Synthesis and characterization of a hollow spherical form of monolayer aluminosilicate. Clays Clay Miner., v.36, p.11-18 https://doi.org/10.1346/CCMN.1988.0360102
  21. Wada, K., Yoshinaga, N., Yotsumoto, H., Ibe, K. and Aida, S. (1970) High resolution electron micrographs of imogolite. Clay Miner., v.8, p.487-489 https://doi.org/10.1180/claymin.1970.008.4.11
  22. Wada, S.-I, Eto, A. and Wada. K. (1979) Synthetic allophane and imogolite. J. Soil Sci., v.30, p.347-355 https://doi.org/10.1111/j.1365-2389.1979.tb00991.x
  23. Wada, S.-I. and Wada, K. (1977) Density and structure of allophane. Clay Miner., v.12, p.289-298 https://doi.org/10.1180/claymin.1977.012.4.02
  24. Wada, S.-I. and Wada, K. (1982) Effects of substitution of germanium for silicon in imogolite. Clays Clay Miner., v.30, p.123-128 https://doi.org/10.1346/CCMN.1982.0300206
  25. Xiong, Y., Mayers, B.T. and Xia, Y. (2005) Some recent developments in the chemical synthesis of inorganic nanotubes. Chem Commun., v.40, p.5013-5022
  26. Yang, P.D., Zhao, D.Y., Chmelka, B.F. and Stucky, G.D. (1998) Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. Chem. Mater., v.10, p.2033-2036 https://doi.org/10.1021/cm980201q
  27. Yu, C., Tian, B., Fan, J., Stucky, G.D. and Zhao, D. (2002) Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating. Chem. Lett., p.62-63
  28. Zhu, G., Qiu, S., Terasaki, O. and Wei, Y. (2001) Polystyrene Bead-Assisted Self-Assembly of Microstructured Silica Hollow Spheres in Highly Alkaline Media. J. Am. Chem. Soc., v.123, p.7723-7724 https://doi.org/10.1021/ja0158758