• Title/Summary/Keyword: Red-mud

Search Result 158, Processing Time 0.024 seconds

The Dynamic Properties of the Artificial Stone According to the Mixed Ratio Change of the Inorganic Composite and Waste Porcelain (폐자기와 3성분계 무기결합재의 혼합비율 변화에 따른 인조석재의 역학적 특성)

  • Yoo, Yong Jin;Bae, Sang Woo;Lee, Sang Soo;Song, Ha Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.95-96
    • /
    • 2012
  • This study makes with the environment-friendly artificial stone which doesn't use the cement and natural aggregate and increases the blast furnace slag that is the eco-friendly material that is the industrial byproduct, fly ash, and availability of the red mud and applies the coares aggregate substitute material as the cleistothecium. The experimental plan according to it indicated the compressive strength and flexural strength which is the most excellent in the mixied ratio 40% of the result degree of closeness magnetism of experimenting with the optimal mix obtained through the preceding stude.

  • PDF

Study on the Strength Properties of Binary Blended Geopolymer Concrete (2성분계 지오폴리머 콘크리트의 강도특성에 관한 연구)

  • Lee, Seung-Hoon;Park, Min-Su;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.276-277
    • /
    • 2014
  • Recently, carbon dioxide emissions have increased in succession according to the development of industry. also, cement of construction materials is being increased carbon dioxide during the manufacturing process. it is predicted that amount of carbon dioxide will be produced about 10 % in the world. as a way of solve this problem, it is used to reduce the amount of cement and to replace cement using industrial by-products such as blast furnace slag, fly ash, and red-mud. but, these are not advanced in our country. Thus, the purpose of this study is to analyze the strength property of binary blended geopolymer concrete. So, this study carries out the basic performance test of concrete such as, slump, air content and compressive strength.

  • PDF

Strength Characteristic according to the 80℃ Water Curing Time Variation of the Ternary System Inorganic Binder (3성분계 무기결합재의 80℃ 수중양생 시간변화에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.100-101
    • /
    • 2014
  • The global warming because of the CO2 emission and solution about this emerge as the international enviroment problem. Particularly, it is the absolutely it is needed for reducing the CO2 in the cement industry and harmful material actual condition. And the construction of home and abroad and material manufacturers tries for the technology development for the carbon dioxide and harmful material reduction which the portland cement in manufacture is usually emitted along with the increase of concerns about the environment-friendly concrete and panel. Therefore, in this research, the compressive strength of the inorganic binder and flexural strength tries to be measured in order to draw the inappropriate high temperature cure time of the ternary system inorganic binder using the blast furnace slag, red mud, silica fumewhich is the industrial byproduct with the cement substitute material, and etc.

  • PDF

Flowing and Strength Properties of Low Carbon Inorganic Composite Depending to Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 따른 저탄소 무기결합재의 유동 및 강도특성)

  • Park, Jong-Pil;Bae, Sang-Woo;Lee, Yun-Seong;Lee, Kang-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.235-236
    • /
    • 2011
  • This study analyzed flowing and strength properties of mortar depending to fine aggregate types and replacement ratio by using blast furnace slag, red mud, and silica fume that are industrial by products. The findings showed that higher replacement level of fine aggregate increased air content while decreased table flow. In addition, compressive strength showed that the higher replacement level was regardless of fine aggregate types, the lower strength became. Mortar substituted by the dredged sand showed high strength.

  • PDF

Flowing and Strength Properties of Ternary System Inorganic Composite Mortar according to the Change of Replacement Ratio of Recycled Sand (순환잔골재 치환율 변화에 따른 3성분계 무기결합재 모르타르의 유동 및 강도특성)

  • Bae, Sang-Woo;Park, Jong-Pil;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.99-100
    • /
    • 2012
  • This study tried to present the appropriate replacement ratio of the recycled sand through the properties of the ternary system inorganic composite mortar according to replacement ratio change of the recycled sand about the natural sand through test verification. The flowing and compressive strength was degraded as the replacement ratio of the experimental result recycled sand increased. The appropriate replacement ratio of the recycled sand according to it was shown up less than 15%.

  • PDF

The Strength and Flowing Properties of PVA Fiber Mortar using the Low-carbon Inorganic Composite according the Replacement Ratio of Fine Aggregate (잔골재 치환율별 저탄소 무기결합재를 사용한 PVA섬유 모르타르의 유동 및 강도특성)

  • Park, Jong-Pil;Moon, Ji-Hwon;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.89-90
    • /
    • 2012
  • This study analyzed and compared the flowing and strength properties of mortar depending on the different fine aggregate replacement ratios and whether or not the mixing of PVA fiber was applied. blast furnace slag, red mud, and silica fume that are industrial by-products were used for the analysis. The findings showed that higher replacement level of fine aggregate increased air content while decreasing the table flow. In addition, in case of the compressive strength, Plain mortar and PVA fiber with the replacement ratios of 15% and 30%, respectively showed the greatest strength development.

  • PDF

Changes in Availability of Toxic Trace Elements (TTEs) and Its Effects on Soil Enzyme Activities with Amendment Addition

  • Lee, Sang-Hwan;Park, Misun;Kim, Min-Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.134-144
    • /
    • 2020
  • In-situ stabilization is a remediation method using amendments to reduce contaminant availability in contaminated soil. We tested the effects of two amendments (furnace slag and red mud) on the availability of toxic trace elements (TTEs) and soil enzyme activities (dehydrogenase, phosphatase, and urease). The application of amendments significantly decreased the availability of TTEs in soil (p < 0.05). The decreased availability of TTE content in soils was accompanied by increased soil enzyme activities. We found significant negative relationships between the TTE content assessed using Ca(NO3)2-, TCLP, and PBET extraction methods and soil enzyme activities (p < 0.01). Soil enzyme activities responded sensitively to changes in the soil environment (pH, EC, and availability of TTEs). It could be concluded that soil enzyme activities could be used as bioindicators or ecological indicators for soil quality and health in environmental soil monitoring owing to their high sensitivity to changes in soil.

Dry Shrinkage Characteristic according to the Ternary System Inorganic Binder Panel Size (3성분계 무기결합재 패널크기에 따른 건조수축 특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.144-145
    • /
    • 2014
  • In the cement,that is the main materials of the panel, as to the cofired process, more than 1,300 enormous energies is consumed, in addition the greenhouse gas generated in the process of producing the cement occupies 6.3% of the country whole emission quantity. And the carbon dioxide of about 0.8 ton is the cement ejected in 1 production. Accordingly, the panel utilizing the industrial byproduct is developed. Accordingly, this research is the experiment which makes the individual size into the environment-friendly inorganic binder panel and by using the blast furnace slag, which is the industrial byproduct with the cement substitute material red mud, silica fume, and etc. looks at the dry shrinkage. The length variation in which the panel which is 450 with the dry shrinkage result of measurement, thickness 12mm, and size 450mm is the smallest was shown.

  • PDF

A Study on the Mixing of Ultra High Performance Concrete with Red Mud containing Titan dioxide (이산화티탄이 함유된 레드머드를 혼입한 초고성능콘크리트의 배합에 관한 연구)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.70-71
    • /
    • 2019
  • Interest in indoor air quality is increasing day by day due to various reasons such as industrial development. Because redmud, an industrial subsidiary, contains titanium dioxide, this study evaluated self-consolidation performance with Slump Flow Test, J-Ring Test, and L-Box Test by mixing redmud in a mixture of ultra-high performance concrete, and sought the optimal combination with high flowability. In addition, the UHPC mixing experiment with photocatalyst was conducted, and the photocatalyst was replaced by the weight ratio of cement and the redmud by the weight ratio of fine aggregate and mixed with the concrete mixture.

  • PDF

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.