• Title/Summary/Keyword: Recycled waste concrete

Search Result 424, Processing Time 0.031 seconds

An Experimental Study on the Engineering Properties of Flowing Recycled Concrete using Fly-ash (플라이애시를 사용한 유동화재생콘크리트의 공학적 특성에 관한 실험적 연구)

  • 박선규;박유신;강석표;신홍철;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.57-62
    • /
    • 1998
  • As the waste concrete is increased by demolition according to the plan of city-reconstruction and preperation of city-environment etc, the production of waste concrete in the country is being very increased every years. Because the use of recycled aggregate is low, the cases of unlawful reclamation and disuse are increased. These occur the social and economic problems. This experimental study is to investigate the fluidity, compressive strength and durability of flowing recycled aggregate concrete using the river sand and recycled coarse aggregate according to the replacement rate of fly-ash and to present the fundamental data for the using of flowing recycled aggregate concrete.

  • PDF

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Chemical Properties of Recycled Cement using Cementitious Powder from Waste Concrete (폐콘크리트 미분말을 이용한 재생시멘트의 화학적 특성)

  • Kang, Dong-Woo;Han, Chang-Woo;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.39-40
    • /
    • 2011
  • This study is to analyse possibility cementitious powder from waste concrete as row material of recycled cement. From the results, we ascertained possibility as recycled cement through XRF & XRD of cementitious powder & recycled cement. As a result of the experiment, cementitious powder from waste concrete, which appeared to recovery hydration chemically at the calcining temperature of 700, suggested highly possibility as recycled cement.

  • PDF

A Study on Engineering Characteristics of Asphalt Concrete Mixtures Using Filler with Recycled Waste Lime (부산석회를 채움재로 재활용한 아스팔트 혼합물의 공학적 특성)

  • Hwang, Sung-Do;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.71-78
    • /
    • 2005
  • This study focuses on finding out engineering characteristics of asphalt concrete mixtures using mineral fillers with recycled waste lime, which is a by-product in the Soda Ash(Na2CO3) production course. The materials tested in this study were made with 25%, 50%, 75% and 100% of mixing ratio based on the conventional mineral filler ratio to analyze the recycle possibility of the waste lime. The asphalt concrete mixtures with recycled waste lime and hydrated lime, and conventional asphalt concrete mixtures were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete mixtures at the wide range of temperatures. It is also found that the mixtures with recycled waste lime show higher resistance against stripping than conventional asphalt concrete mixtures. It is concluded from various test results that the waste lime can be used as mineral fillers and especially can greatly improve resistance to permanent deformation of asphalt concrete mixtures at high temperatures.

  • PDF

Performance studies on concrete with recycled coarse aggregates

  • Yaragal, Subhash C.;Teja, Dumpati C.;Shaffi, Mohammed
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.263-281
    • /
    • 2016
  • Concrete continues to be the most consumed construction material in the world, only next to water. Due to rapid increase in construction activities, Construction and Demolition (C&D) waste constitutes a major portion of total solid waste production in the world. It is important to assess the amount of C&D waste being generated and analyse the practices needed to handle this waste from the point of waste utilization, management and disposal addressing the sustainability aspects. The depleting natural resources in the current scenario warrants research to examine viable alternative means, modes and methods for sustainable construction. This study reports processing Recycled Coarse Aggregates (RCA) using a rod mill, for the first time. Parameters such as amount of C&D waste for processing, nature of charge and duration of processing time have been optimized for obtaining good quality RCA. Performance of RCA based concrete and performance enhancement techniques of 50% RCA based concrete are discussed in this paper.

Cost Analysis of Recycled Aggregate Production on Airport Pavement (공항포장용 순환골재의 처리방법별 경제성 분석)

  • Kang, Seung Min;Lee, Hwal Ung;Yang, Sung Chul
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.39-47
    • /
    • 2014
  • PURPOSES : This study aimed to analyze economic effect of recycled aggregate production on job-site airport pavement. METHODS : The validation of site recycling for waste concrete as economic efficiency is analyzed through the case study of site recycling at an O airport pavement construction. The break-even point for the cost of site recycling was estimated according to two different waste concrete processing methods such as job-site recycling and processing on commission (or plant). RESULTS : Job-site recycling cost decreases as the use rate of job-site recycled concrete aggregate increases, or the amount of concrete waste increases, but transporting distance decreases. It was shown in an O airport case that as the use rate of job-site recycled concrete aggregate exceeds 61.4 %, the job-site recycling cost is cheaper than the processing cost on commission. CONCLUSIONS : The results of this study can utilize basic data of feasibility for site recycling of waste concrete on airport pavement construction.

Quality Improvement of Recycled Aggregates from Waste Concrete by the heating and grinding

  • Kim, Hyung-Seok;Han, Gi-Chun;Ahn, Ji-Whan;Park, Jae-Seok;Kim, Hwan;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • To examine the grinding effect through preheating of waste concrete as a way of retrieving coarse aggregates from waste concrete, the removal rates of cement mortar and paste of both recycled aggregates and heated and grinded ones were investigated. As the preheating temperature increased, the removal rate of cement mortar from waste concrete was raised, and this kind of removal hardly affected the abrasion rate and specific gravity of aggregates. On the other hand, when it was treated over 40$0^{\circ}C$ of preheating temperature, the absorptance was reduced to less than 2.17, and cement mortar was effectively separated from waste concrete. It could meet the Korean Standards on recycled aggregates for concrete, and it is expected to expand the scope of utilization by making it possible to retrieve the aggregates which have the properties close to natural aggregates.

  • PDF

Properties of Lightweight Foamed Concrete According to the Replacement Ratio of Waste Concrete Sludge and Variation of Foam Ratio (폐콘크리트슬러지 대체율과 기포혼입률 변화에 따른 경량기포콘크리트의 특성)

  • Lee, Jung-Goo;Kim, Jae-Won;Choi, Hun-Gug;Kang, Cheol;Lee, Do-Heun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Recently, waste concrete emission has been increased by acceleration of urban development and the rapid growth of redevelopment projects, so recycling of waste concrete is actively progressed, But the usage is limited to a lower value added such as the roadbed material etc. To produce the high quality recycled aggregate, breaking and washing process is added to the existing process and inevitably increases the occurrence of particle, because old mortal is included in the recycled aggregate. Therefore, this study purpose is analysis the properties of lightweight foamed concrete made by waste concrete sludge which is the by-product from produce the recycled aggregate. In result, possibility of manufacture of lightweight foamed concrete which gives equal performance compared with ALC was detect(scope of density : $0.5{\sim}0.6$, scope of compressive strength : $3.5{\sim}4.0MPa$). And scope of porosity is as follow ; total porosity : $27{\sim}30%$, open porosity : $1{\sim}5%$

  • PDF

The Study on Sound Absorbing Characteristics of Porous Concrete according to Reverberation Room Methods (랜덤입사방법에 의한 포러스 콘크리트의 흡음특성에 관한 실험적 연구)

  • Seo Dae seuk;Park Seong Bum;Cho Gwang yeon;Jang Young Ill;Kim Hyung Seok;Lee yoon Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.568-571
    • /
    • 2004
  • This research estimated the physical. mechanical characteristic and the character of sound absorption according to target void ratio of porous concrete and the mixing ratio of recycled aggregate for the valid utilization of recycled aggregate using waste concrete and sound reduction out of a road, a railway, a residential street, and a downtown area. As a result of the test, compressive strength tended to be a radical strength fall when target void ratio was $25\%$ and contents of recycled aggregate exceeded over $50\%$. Also, the character of sound absorption of porous concrete which used recycled aggregate using waste concrete was the most excellent when target void ratio was $25\%$, and the influence by contents of recycled aggregate was trivial. Therefore, when the strength and the character of sound absorption of porous concrete are considered, it is proved valid that proper target void ratio was $25\%$ and contents of recycled aggregate using waste concrete was $50\%$ or so.

  • PDF

An Experimental Study on the Chemical Soundness of Recycled Aggregate Concrete (재생골재 콘크리트의 화학안정성에 관한 실험적 연구)

  • 김무한;김규용;박선규;이정율
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.13-20
    • /
    • 1999
  • Recently, the study for practical construction application no recycled aggregate concrete is actively being proceeded, on the purpose of technical development for recycling on the construction waste concrete occurred at the time of destruction of building construction by the rapid increase of building wastes and exhaustion of natural aggregates. But, the durability of investigation with all sorts of fluidity and engineering property for application recycled aggregate concrete to practical construction must be done at the same time. Especially, because of the real condition for chemical attack of concrete construction by the acid rain, acidification of soil, deepening of air pollution and dirty water etc. being come to the fore a serious problem, the study on the chemical soundness of concrete durability must be accompanied. This study is composed as: I series: Analysis for chemical soundness of aggregates. II series: Analysis for chemical soundness of natural and recycled aggregate concrete against $Na_2$$SO_4$ solution in drying and wet curing condition ($at20~80^{\circ}C$).