• Title/Summary/Keyword: Reasoning Ability

Search Result 280, Processing Time 0.032 seconds

Neuroethics and Christian Education (신경윤리와 기독교교육)

  • Yu, Jae Deog
    • Journal of Christian Education in Korea
    • /
    • v.64
    • /
    • pp.145-171
    • /
    • 2020
  • Christian communities have long sought to find what type of moral judgment is appropriate and what the Christian behavior is, by taking the church's ethical norms and behavior patterns as objects of reflection. In the same context, Christian education also tried to base the psychological rationalism of J. Piaget and L. Kohlberg, but the reason-centered structural development theory was not the answer. In fact, the structural development theory, which emphasized autonomy while excluding emotions from the moral judgment process, over-emphasizing cognition or reason, eventually led to moral relativism, unlike what was intended. In addition, it was criticized for not being able to adequately elucidate the gap between human moral reasoning and behavior, and for attempting to interpret morality excessively within the context of social culture. Recently, these limitations of structural developmental theory have been reinterpreted by neuroethics, especially moral psychology theories, which claim that moral judgment ability is physically wired in the brain and relies heavily on networks between cortical and limbic system. The purpose of this paper is to review some of the newly emerged research themes of neuroethics, and then to discuss two main theories that explain morality in the perspective of neuroethics and the implications that Christian education should pay attention to.

The Compositions and the Characteristics of the Chinese National Test for University Admissions, and the Analysis on Items Concerning Chemistry (중국 대학입학시험의 구성 및 특징과 화학 문항 분석)

  • Kim, Hyun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1158-1174
    • /
    • 2011
  • In this study, we examined the compositions, basic principles, and the area of the National Higher Education Entrance Examination (GaoKao) in 2009, we also analyzed the categories and characteristics of items. Also, the GaoKao was analyzed in terms of test specifications, the number of items, item patterns, difficulty levels, and implications of the College Scholastic Ability Test(CSAT) were explored. Results show Natural Science section of the National Test 1, 2 are 300 points per 150 min, and Natural Science, and Chemistry of Shanghai is 150 points each per 120 min. Also, the GaoKao contained multiple choice and fill in the blanks questions, and the description items are composed of experiments of various types. The GaoKao Natural Science section is composed of physics, chemistry, biology but not earth science, which is different from the CSAT. GaoKao requires basic understanding or the observation ability to reasoning, the complex thinking ability, especially emphasized on the experiment ability. The range of possible questions is in the examination outline, not the curriculum, and the ratio of questions from the University level is high. In the analysis of the behavioral domain, the ratios of the understanding and application items is higher than the CSAT, and inquiry items is lower, but the inquiry items are deeper. In case of the ratio of the expected correct answer, National Test 1 and National Test 2 is similar, but the difficult items or about 20~39% of the test is 4~5 times to that of the CSAT, making the GaoKao very difficult. The peculiar characteristics of GaoKao is the emphasis on the experiment, and even though the practical items is of lower ratio, they are very useful in life.

An Epistemological Inquiry on the Development of Statistical Concepts (통계적 개념 발달에 관한 인식론적 고찰)

  • Lee, Young-Ha;Nam, Joo-Hyun
    • The Mathematical Education
    • /
    • v.44 no.3 s.110
    • /
    • pp.457-475
    • /
    • 2005
  • We have inquired on what the statistical classes of the secondary schools had been aiming to, say the epistermlogical objects. And we now appreciate that the main obstacle to the systematic articulation is the lack of anticipation on what the statistical concepts are. This study focuses on the ingredients of the statistical concepts. Those are to be the ground of the systematic articulation of statistic courses, especially of the one for the school kids. Thus we required that those ingredients must satisfy the followings. i) directly related to the contents of statistics ii) psychologically developing iii) mutually exclusive each other as much as possible iv) exhaustive enough to cover all statistical concepts We examined what and how statisticians had been doing and the various previous views on these. After all we suggest the following three concepts are the core of conceptual developments of statistic, say the concept of distributions, the summarizing ability and the concept of samples. By the concepts of distributions we mean the frequency views on each random categories and that is developing from the count through the probability along ages. Summarizing ability is another important resources to embed his probe with the data set. It is not only viewed as a number but also to be anticipated as one reflecting a random phenomena. Inductive generalization is one of the most hazardous thing. Statistical induction is a scientific way of challenging this and this starts from distinguishing the chance with the inevitable consequences. One's inductive logic grows up along with one's deductive arguments, nevertheless they are different. The concept of samples reflects' one's view on the sample data and the way of compounding one's logic with the data within one's hypothesis. With these three in mind we observed Korean Statistic Curriculum from K to 12. Distributional concepts are dealt with throughout but not sequenced well. The way of summarization has been introduced in the 1 st, 5th, 7th and the 10th grade as a numerical value only. One activity on the concept of sample is given at the 6th grade. And it jumps into the statistical reasoning at the selective courses of ' Mathematics I ' or of ' Probability and Statistics ' in the grades of 11-12. We want to suggest further studies on the developing stages of these three conceptual features so as to obtain a firm basis of successive statistical articulation.

  • PDF

A Policy-Based Meta-Planning for General Task Management for Multi-Domain Services (다중 도메인 서비스를 위한 정책 모델 주도 메타-플래닝 기반 범용적 작업관리)

  • Choi, Byunggi;Yu, Insik;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.499-506
    • /
    • 2019
  • An intelligent robot should decide its behavior accordingly to the dynamic changes in the environment and user's requirements by evaluating options to choose the best one for the current situation. Many intelligent robot systems that use the Procedural Reasoning System (PRS) accomplishes such task management functions by defining the priority functions in the task model and evaluating the priority functions of the applicable tasks in the current situation. The priority functions, however, are defined locally inside of the plan, which exhibits limitation for the tasks for multi-domain services because global contexts for overall prioritization are hard to be expressed in the local priority functions. Furthermore, since the prioritization functions are not defined as an explicit module, reuse or extension of the them for general context is limited. In order to remove such limitations, we propose a policy-based meta-planning for general task management for multi-domain services, which provides the ability to explicitly define the utility of a task in the meta-planning process and thus the ability to evaluate task priorities for general context combining the modular priority functions. The ontological specification of the model also enhances the scalability of the policy model. In the experiments, adaptive behavior of a robot according to the policy model are confirmed by observing the appropriate tasks are selected in dynamic service environments.

The Effect of High School Research Project using the Science Writing Heuristic (탐구적 과학 글쓰기(SWH)를 적용한 고등학교 과제연구의 효과)

  • Moon, Saetbyeol;Choi, Wonho
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.398-411
    • /
    • 2018
  • The purpose of this study is to investigate the effects of research project activities using the science writing heuristic on science inquiry abilities and attitudes toward science in high school students. For this purpose, we conducted the research project activities using the science writing heuristic consisting of questioning, experimental design, observation, argument and evidence, reading, and reflection steps for 73 students of the second year of science core course in high school in Jeonnam. In order to analyze the effects of the program, we surveyed the scientific inquiry ability and attitude toward science, investigated the perception of the research project class applying science writing heuristic, and conducted interviews when there was difficulty in interpreting the results. And the results of this study are as follows. First, among the science inquiry abilities, the score of Reasoning, Hypothesis setting, Finding variables, Operational definition, Experimental design, Graphing and data interpretation, Generalization was significantly improved statistically (p<.05), but the score of Expectation was not statistically significant (p>.05). Second, among the attitudes toward science, the score of 'Leisure interest in science', 'Enjoyment of science lessons', 'Career interest in science' was significantly improved statistically (p<.05). And the score of 'Attitude to scientific inquiry' decreased but it's not significant statistically. The high school research project applying science writing heuristic had a positive effect on scientific inquiry ability and scientific attitude but it could be burden to students because it is led by students in a form different from general science class for a long time. And so continuous study on research project that minimize these disadvantages and maximize their merits is needed.

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.

Summative Evaluation of 1993, 1994 Discussion Contest of Scientific Investigation (제 1, 2회 학생 과학 공동탐구 토론대회의 종합적 평가)

  • Kim, Eun-Sook;Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.376-388
    • /
    • 1996
  • The first and the second "Discussion Contest of Scientific Investigation" was evaluated in this study. This contest was a part of 'Korean Youth Science Festival' held in 1993 and 1994. The evaluation was based on the data collected from the middle school students of final teams, their teachers, a large number of middle school students and college students who were audience of the final competition. Questionnaires, interviews, reports of final teams, and video tape of final competition were used to collect data. The study focussed on three research questions. The first was about the preparation and the research process of students of final teams. The second was about the format and the proceeding of the Contest. The third was whether participating the Contest was useful experience for the students and the teachers of the final teams. The first area, the preparation and the research process of students, were investigated in three aspects. One was the level of cooperation, participation, support and the role of teachers. The second was the information search and experiment, and the third was the report writing. The students of the final teams from both years, had positive opinion about the cooperation, students' active involvement, and support from family and school. Students considered their teachers to be a guide or a counsellor, showing their level of active participation. On the other hand, the interview of 1993 participants showed that there were times that teachers took strong leading role. Therefore one can conclude that students took active roles most of the time while the room for improvement still exists. To search the information they need during the period of the preparation, student visited various places such as libraries, bookstores, universities, and research institutes. Their search was not limited to reading the books, although the books were primary source of information. Students also learned how to organize the information they found and considered leaning of organizing skill useful and fun. Variety of experiments was an important part of preparation and students had positive opinion about it. Understanding related theory was considered most difficult and important, while designing and building proper equipments was considered difficult but not important. This reflects the students' school experience where the equipments were all set in advance and students were asked to confirm the theories presented in the previous class hours. About the reports recording the research process, students recognize the importance and the necessity of the report but had difficulty in writing it. Their reports showed tendency to list everything they did without clear connection to the problem to be solved. Most of the reports did not record the references and some of them confused report writing with story telling. Therefore most of them need training in writing the reports. It is also desirable to describe the process of student learning when theory or mathematics that are beyond the level of middle school curriculum were used because it is part of their investigation. The second area of evaluation was about the format and the proceeding of the Contest, the problems given to students, and the process of student discussion. The format of the Contests, which consisted of four parts, presentation, refutation, debate and review, received good evaluation from students because it made students think more and gave more difficult time but was meaningful and helped to remember longer time according to students. On the other hand, students said the time given to each part of the contest was too short. The problems given to students were short and open ended to stimulate students' imagination and to offer various possible routes to the solution. This type of problem was very unfamiliar and gave a lot of difficulty to students. Student had positive opinion about the research process they experienced but did not recognize the fact that such a process was possible because of the oneness of the task. The level of the problems was rated as too difficult by teachers and college students but as appropriate by the middle school students in audience and participating students. This suggests that it is possible for student to convert the problems to be challengeable and intellectually satisfactory appropriate for their level of understanding even when the problems were difficult for middle school students. During the process of student discussion, a few problems were observed. Some problems were related to the technics of the discussion, such as inappropriate behavior for the role he/she was taking, mismatching answers to the questions. Some problems were related to thinking. For example, students thinking was off balanced toward deductive reasoning, and reasoning based on experimental data was weak. The last area of evaluation was the effect of the Contest. It was measured through the change of the attitude toward science and science classes, and willingness to attend the next Contest. According to the result of the questionnaire, no meaningful change in attitude was observed. However, through the interview several students were observed to have significant positive change in attitude while no student with negative change was observed. Most of the students participated in Contest said they would participate again or recommend their friend to participate. Most of the teachers agreed that the Contest should continue and they would recommend their colleagues or students to participate. As described above, the "Discussion Contest of Scientific Investigation", which was developed and tried as a new science contest, had positive response from participating students and teachers, and the audience. Two among the list of results especially demonstrated that the goal of the Contest, "active and cooperative science learning experience", was reached. One is the fact that students recognized the experience of cooperation, discussion, information search, variety of experiments to be fun and valuable. The other is the fact that the students recognized the format of the contest consisting of presentation, refutation, discussion and review, required more thinking and was challenging, but was more meaningful. Despite a few problems such as, unfamiliarity with the technics of discussion, weakness in inductive and/or experiment based reasoning, and difficulty in report writing, The Contest demonstrated the possibility of new science learning environment and science contest by offering the chance to challenge open tasks by utilizing student science knowledge and ability to inquire and to discuss rationally and critically with other students.

  • PDF

The Persuit of Rationality and the Mathematics Education (합리성의 추구와 수학교육)

  • Kang Wan
    • The Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.105-116
    • /
    • 1986
  • For any thought and knowledge, its growth and development has close relation with the society where it is developed and grow. As Feuerbach says, the birth of spirit needs an existence of two human beings, i. e. the social background, as well as the birth of body does. But, at the educational viewpoint, the spread and the growth of such a thought or knowledge that influence favorably the development of a society must be also considered. We would discuss the goal and the function of mathematics education in relation with the prosperity of a technological civilization. But, the goal and the function are not unrelated with the spiritual culture which is basis of the technological civilization. Most societies of today can be called open democratic societies or societies which are at least standing such. The concept of rationality in such societies is a methodological principle which completes the democratic society. At the same time, it is asserted as an educational value concept which explains comprehensively the standpoint and the attitude of one who is educated in such a society. Especially, we can considered the cultivation of a mathematical thinking or a logical thinking in the goal of mathematics education as a concept which is included in such an educational value concept. The use of the concept of rationality depends on various viewpoints and criterions. We can analyze the concept of rationality at two aspects, one is the aspect of human behavior and the other is that of human belief or knowledge. Generally speaking, the rationality in human behavior means a problem solving power or a reasoning power as an instrument, i. e. the human economical cast of mind. But, the conceptual condition like this cannot include value concept. On the other hand, the rationality in human knowledge is related with the problem of rationality in human belief. For any statement which represents a certain sort of knowledge, its universal validity cannot be assured. The statements of value judgment which represent the philosophical knowledge cannot but relate to the argument on the rationality in human belief, because their finality do not easily turn out to be true or false. The positive statements in science also relate to the argument on the rationality in human belief, because there are no necessary relations between the proposition which states the all-pervasive rule and the proposition which is induced from the results of observation. Especially, the logical statement in logic or mathematics resolves itself into a question of the rationality in human belief after all, because all the logical proposition have their logical propriety in a certain deductive system which must start from some axioms, and the selection and construction of an axiomatic system cannot but depend on the belief of a man himself. Thus, we can conclude that a question of the rationality in knowledge or belief is a question of the rationality both in the content of belief or knowledge and in the process where one holds his own belief. And the rationality of both the content and the process is namely an deal form of a human ability and attitude in one's rational behavior. Considering the advancement of mathematical knowledge, we can say that mathematics is a good example which reflects such a human rationality, i. e. the human ability and attitude. By this property of mathematics itself, mathematics is deeply rooted as a good. subject which as needed in moulding the ability and attitude of a rational person who contributes to the development of the open democratic society he belongs to. But, it is needed to analyze the practicing and pursuing the rationality especially in mathematics education. Mathematics teacher must aim the rationality of process where the mathematical belief is maintained. In fact, there is no problem in the rationality of content as long the mathematics teacher does not draw mathematical conclusions without bases. But, in the mathematical activities he presents in his class, mathematics teacher must be able to show hem together with what even his own belief on the efficiency and propriety of mathematical activites can be altered and advanced by a new thinking or new experiences.

  • PDF

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Developing and Applying the Questionnaire to Measure Science Core Competencies Based on the 2015 Revised National Science Curriculum (2015 개정 과학과 교육과정에 기초한 과학과 핵심역량 조사 문항의 개발 및 적용)

  • Ha, Minsu;Park, HyunJu;Kim, Yong-Jin;Kang, Nam-Hwa;Oh, Phil Seok;Kim, Mi-Jum;Min, Jae-Sik;Lee, Yoonhyeong;Han, Hyo-Jeong;Kim, Moogyeong;Ko, Sung-Woo;Son, Mi-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • This study was conducted to develop items to measure scientific core competency based on statements of scientific core competencies presented in the 2015 revised national science curriculum and to identify the validity and reliability of the newly developed items. Based on the explanations of scientific reasoning, scientific inquiry ability, scientific problem-solving ability, scientific communication ability, participation/lifelong learning in science presented in the 2015 revised national science curriculum, 25 items were developed by five science education experts. To explore the validity and reliability of the developed items, data were collected from 11,348 students in elementary, middle, and high schools nationwide. The content validity, substantive validity, the internal structure validity, and generalization validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there were no nonconformity in the 25 items. The confirmatory factor analysis using the structural equation modeling revealed that the five-factor model was a suitable model. The differential item functioning analyses by gender and school level revealed that the nonconformity DIF value was found in only two out of 175 cases. The results of the multivariate analysis of variance by gender and school level showed significant differences of test scores between schools and genders, and the interaction effect was also significant. The assessment items of science core competency based on the 2015 revised national science curriculum are valid from a psychometric point of view and can be used in the science education field.