DOI QR코드

DOI QR Code

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability

수학적 사고력에 관한 인지신경학적 연구 개관

  • Kim, Yon Mi (Hong Ik University, School of Engineering)
  • Received : 2016.05.15
  • Accepted : 2016.05.17
  • Published : 2016.06.30

Abstract

Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

수학적 사고력은 STEM(science, technology, engineering, mathematics) 분야에서의 학업적인 성취와 과학기술의 혁신에서 중요한 역할을 하고 있다. 본 연구에서는 학제 간 연구 분야인 수 인지(numerical cognition) 및 수학적 인지와 관련된 최근의 인지신경학적 연구 결과들을 종합하여 개관하였다. 첫째로 수학적 사고의 기초가 되는 뇌 기제의 위치와 정보처리 메커니즘을 확인하였다. 수학적 사고는 영역 특정적(domain specific)인 기능인 수 감각과 시공간적 능력뿐만 아니라 영역 일반적(domain general)인 기능인 언어, 장기기억, 작업 기억(working memory) 등을 기초로 하며 이를 토대로 추상화, 추론 등의 고차원적인 사고를 한다. 이 중에서 수 감각과 시공간적 능력은 두정엽(parietal lobe)을 기반으로 한다. 두 번째로는 수학적 사고 능력에서 관찰되는 개인 차이에 대하여 고찰하였다. 특히 수학 영재들의 신경학적인 특성을 신경망 효율성(neural efficiency)의 관점에서 고찰해 보았다. 그 결과 높은 지능이란 두뇌가 얼마나 많이 일하느냐가 아니라 얼마나 효율적으로 일하는가에 달렸다는 사실을 확인하였다. 수학 영재들의 또 다른 특성은 좌반구와 우반구 간의 연결과 반구 내에서 전두엽과 두정엽의 연결이 뛰어나다는 사실이다. 세 번째로는 학습과 훈련, 그리고 성장에 따른 변화 및 발전에 대한 분석이다. 개인이 성장하며, 수학 학습과 훈련을 하게 될 때 이에 따라 두뇌 피질에서도 변화가 반영되어 나타난다. 그 변화를 피질에서의 활성화 수준의 변화, 재분배, 구조적 변화라는 관점에서 해석하였다. 이 중에서 구조적 변화는 결국 신경 가소성(neural plasticity)을 의미한다. 마지막으로 수학적 창의성은 수학적 지식(개념)을 기초로 하여 수학적 개념들을 결합하는 단계가 요구되며, 그 후 결합된 개념들 중에서 심미적인 선택을 통해 수학적 발명(발견)으로 연결된다. 전문성이 높아질수록 결합과 선택이라는 두 단계가 더욱 중요해진다.

Keywords

References

  1. 김연미 (2013). 수학적 사고에 동원되는 두뇌영역들과 이의 교육학적 의미. 한국수학교육학회지 시리즈 A, 52(1), 19-41.
  2. 김연미 (2015). 공과대학 신입생들의 공간 시각화 능력, 수학 성취도와 언어 성취도 사이의 관계 및 성별 차이에 관한 연구. 한국수학교육학회지 시리즈 E, 29(3), 553-571.
  3. 이재호, 진석언, 류지영 (2010). 창의.인성을 갖춘 미래사회 영재 판별방법 연구. 한국과학 창의재단.
  4. Andres, M., Pelgrims, B., Michaux, N., Olivier, E., & Pesenti, M. (2011). Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study. NeuroImage, 54(4), 3048-3056. https://doi.org/10.1016/j.neuroimage.2010.11.009
  5. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-91. https://doi.org/10.1038/nrn2334
  6. Arsalidou, M., & Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54(3), 2382-93. https://doi.org/10.1016/j.neuroimage.2010.10.009
  7. Aydin, K., Ucar, A., Oguz, K., Okur, O., Agayev, A., Unal, Z., Yilmaz, S., & Ozturk, C. (2007). Increased gray matter density in the parietal cortex of mathematicians: A Voxel-Based Morphometry study. American Journal of Neuroradiology, 28(10), 1859-1864. https://doi.org/10.3174/ajnr.A0696
  8. Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (pp. 129-163). Cambridge, UK: Cambridge University Press.
  9. Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullen, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148-1150. https://doi.org/10.1038/nn1516
  10. Bodner, G., & Guay, R. (1997). Purdue spatial visualization Test-Rotation. The Chemical Educator, 2(4), 1-14.
  11. Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 93(7), 404-431.
  12. Casey, M. B., Pezaris, E., & Nuttall, R. L. (1992). Spatial ability as a predictor of math achievement: the importance of sex and handedness patterns. Neuropsychologia, 30(1), 35-40. https://doi.org/10.1016/0028-3932(92)90012-B
  13. Cattell, R. B. (1971). Abilities: Their structure, growth, and action. New York: Houghton Mifflin.
  14. Changeux, J. P., & Conne, A. (2002). 정신, 물질, 그리고 수학. (강주현 역). 서울: 경문사.
  15. Conway, A., Kane, M., & Engle, R. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Science, 7(12), 547-552. https://doi.org/10.1016/j.tics.2003.10.005
  16. Crutch, S. & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128(3), 615-627. https://doi.org/10.1093/brain/awh349
  17. Dehaene, S. (1997). The number sense. Oxford University Press, New York, NY: Penguin.
  18. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487-560. https://doi.org/10.1080/02643290244000239
  19. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: behavioral and brainimaging evidence. Science, 284(5416), 970-974. https://doi.org/10.1126/science.284.5416.970
  20. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex mathematics - a fMRI study. Cognitive Brain Research, 18(1), 76-88. https://doi.org/10.1016/j.cogbrainres.2003.09.005
  21. Desco, M., Navas-Sanchez, F. J., Sanchez-Gonzalez, J., Reig, S., Robles, O., Franco, C., Guzman-De-Villoria, J. A., Garcia-Barreno, P., & Arango, C. (2011). Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks. Neuroimage, 57(1), 281-292. https://doi.org/10.1016/j.neuroimage.2011.03.063
  22. Donaldson, H. (2013). The growth of brain: A study of the nervous system in relation to education. London: Forgotten Books. (Original work published 1895)
  23. Dowker, A. D. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove: Psychology Press.
  24. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In (D. Tall, Ed.), Advanced Mathematical Thinking, Dordrecht: Kluwer, 95-126.
  25. Duncan, J., Seitz, R., Kolodny, J., Bor, D., Herzog, H., & Ahmed, A. (2000). A neural basis for general intelligence. Science, 289(5478), 457-460. https://doi.org/10.1126/science.289.5478.457
  26. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305-307. https://doi.org/10.1126/science.270.5234.305
  27. Eliot, J., & Smith, T. M. (1983). An international directory of spatial tests. Windsor, UK: NFER-Nelson.
  28. Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8(10), 307-314. https://doi.org/10.1016/j.tics.2004.05.002
  29. Fryer, S. L., Frank, L. R., Spadoni, A. D., Theilmann, R. J., Nagel, B. J., Schweinsburg, A. D., & Tapert, S. F. (2008). Microstructural integrity of the corpus callosum linked with neuropsychological performance in adolescents. Brain Cognition, 67(2), 225-233. https://doi.org/10.1016/j.bandc.2008.01.009
  30. Gallagher, A., Levin, J., & Cahalan, C. (2002). Cognitive patterns of gender differences on mathematics admission tests. Educational Assessment, 8(1), 27-41. https://doi.org/10.1207/S15326977EA0801_02
  31. Geake, J., & Hansen, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 255-264.
  32. Geary, D. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15. https://doi.org/10.1177/00222194040370010201
  33. Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia, and acalculia: local diagnostic value. Archives of Neurology and Psychiatry, 44(2), 398-408. https://doi.org/10.1001/archneurpsyc.1940.02280080158009
  34. Hadamard, J. (1975). 수학분야의 발명의 심리학. (정계섭 역). 서울: 범양사 출판부.
  35. Haier, R., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study. Brain Research, 570(1), 4-143.
  36. Holyoak, K. J., & Morrison, R. (2005). The Cambridge Handbook of Thinking and Reasoning. Cambridge: University Press.
  37. Hoppe, C., Fliessbacha, K., Stausberga, S., Stojanovica, J., Trautner, P., Elgera, C., & Weber, B. (2012). A key role for experimental task performance: Effects of math talent, gender and performance on the neural correlates of mental rotation. Brain and Cognition, 78(1), 14-27. https://doi.org/10.1016/j.bandc.2011.10.008
  38. Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., & Chen, F. (2011). Enhanced white matter tracts integrity in children with abacus training. Human Brain Mapping, 32(1), 10-21. https://doi.org/10.1002/hbm.20996
  39. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448. https://doi.org/10.1038/nrn1684
  40. Iucculano, T., & Kadosh, C. R. (2013). The mental cost of cognitive enhancement. The Journal of Neuroscience, 33(10), 4482-4486. https://doi.org/10.1523/JNEUROSCI.4927-12.2013
  41. Jaeggi, S., Buschkuehl, M., Jonides, J., & Perrig, W. (2008). Improving fluid intelligence with training on working memory. PNAS, 105(19), 6829-6833. https://doi.org/10.1073/pnas.0801268105
  42. Jung, R., & Haier, R. (2007). The parieto - frontal integration theory of intelligence: converging neuroimging evidence. Behavioral & Brain Sciences, 30(2), 135-187. https://doi.org/10.1017/S0140525X07001185
  43. Kadosh, C. R., Bahrami, B., Walsh, V., Butterworth, B., Popscu, T., & Price, C. (2011). Specalization in the human brain: The case of numbers. Frontiers in human Neuroscience, 5(62), 1-9.
  44. Kadosh, C. R., Henic, A., & Rubinsten, O. (2008). Are Arabic and verbal numbers processed differently?. Journal of Experimental Psychology: Learning, Memory and Cognition, 34(6), 1377-1391. https://doi.org/10.1037/a0013413
  45. Kadosh, C. R., Kadosh, C. K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation dependent and independent representations of numbers in the parietal lobes. Neuron 53(2), 307-314. https://doi.org/10.1016/j.neuron.2006.12.025
  46. Kodash, C. R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132-147. https://doi.org/10.1016/j.pneurobio.2007.11.001
  47. Kadosh, C. R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long lasting changes in numerical competence. Current Biology, 20(22), 2016-2020. https://doi.org/10.1016/j.cub.2010.10.007
  48. Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109-129. https://doi.org/10.1037/0033-295X.92.1.109
  49. Klingberg, T. (2006). Development of a superior frontalintraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171-2177. https://doi.org/10.1016/j.neuropsychologia.2005.11.019
  50. Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J., & Subramaniam, K. (2006). The preparedmind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882-890. https://doi.org/10.1111/j.1467-9280.2006.01798.x
  51. Krawczky, D., Mcclelland, M., & Donovan, C. (2011). A hierarchy for relational reasoning in the prefrontal cortex. Cortex, 47(5), 588-597. https://doi.org/10.1016/j.cortex.2010.04.008
  52. Kroger, J. K., Nystrom, L. E., Cohen, J. D., & Johnson-Laird, P. N. (2008). Distinct neural subtrates for deductive and mathematical processing. Brain Research, 1243, 86-103. https://doi.org/10.1016/j.brainres.2008.07.128
  53. Kroger, J. K., Saab, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12(5), 477-485. https://doi.org/10.1093/cercor/12.5.477
  54. Kuhlenschmidt, S. (2006). My mother's response to stroke. Retrieved from http://people.wku.edu/sally.kuhlenschmidt/stroke/ with permission.
  55. Kyllonen, P., & Christal, R. (1990). Reasoning ability is (little more than) working memory capacity?!. Intelligence, 14(4), 389-433. https://doi.org/10.1016/S0160-2896(05)80012-1
  56. Landau, S., Schumacher, E., Garavan, H., Druzgal, T. J., & D'Esposito, M. (2004). A functional MRI study of the influence of practice on component processes of working memory. Neuroimage, 22(1), 211-221. https://doi.org/10.1016/j.neuroimage.2004.01.003
  57. Le Doux, J. E. (2002). Synaptic self: How our brains become who we are. New York, NY: Viking.
  58. Lee, K. H., Choi, Y. Y., Gray, J., Cho, S. H., Chae, J. H., Lee, S., & Kim, K. (2005). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29(2), 578-586. https://doi.org/10.1016/j.neuroimage.2005.07.036
  59. Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 479-498.
  60. Lippa, R., Collaer, M., & Peters, M. (2010). Sex differences in mental rotation and line angle judgement are positively associated with gender equality and economic development across 53 nations. Archives in Sexual Behaviors, 39(4), 990-997. https://doi.org/10.1007/s10508-008-9460-8
  61. Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlational literature (Tech. Rep. No. 8). Stanford, CA: Stanford University. Aptitude Research project, School of Education.
  62. Lucculano, T., Rosenberg-Lee, M., Richardson, J., Tenison, C., Fuchs, L., Supekar, K., & Menon, V. (2015). Cognitive tutoring induces widespread neuroplasticity and remidiates brain function in children with mathematical learning disabilities. Nature Communications, 6(8453). doi: 10.1038/ncomms9453.
  63. Maguire, E., Woollett, K., & Spiers, H. (2006). London Taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091-1101. https://doi.org/10.1002/hipo.20233
  64. Martinez, M. E. (2000). Education as the cultivation of intelligence. Mahwah, New Jersey: Lawrence Erlbaum Associates.
  65. Matejko, A., Price, G. R., Mazzocco, M. M., & Ansari, D. (2013). Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test. Neuroimage. 66(1), 604-610. https://doi.org/10.1016/j.neuroimage.2012.10.045
  66. McGee, M. (1979). Human Spatial Abi1ities: Psychometric Studies and Environmental, Genetic, Hormonal, and Neurological Influences. Psychological Bulletin, 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  67. Mechner, F. (1958). Probability Relations within Response Sequences under Ratio Reinforcement. Journal of the Experimental Analysis of Behavior, 1(2), 109-21. https://doi.org/10.1901/jeab.1958.1-109
  68. Menon, V. (2014). Arithmetic in the child and adult brains. In C. Kodash & A. Dowker (Eds.), The Oxford Handbook of Mathematical Cognition (pp. 1-23). Oxford: Oxford University Press.
  69. Monti, M., Parsons, L., & Osherson, D. (2012). Thought beyond language: Neural dissociations of algebra and natural language. Psychological Science, 20(10), 1-9.
  70. Nagy, Z., Westerberg, H., & Klingberg, T. (2004): Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227-1233. https://doi.org/10.1162/0898929041920441
  71. Navas-Sanchez, F., Aleman-Gomez, Y., Sanchez-Gonzales, J., Villoria, G., Franco, C., Robles, O., Arango, C., & Desco, M. (2014). Whitematter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35(6), 2619-2631. https://doi.org/10.1002/hbm.22355
  72. Newman, S. D., & Just, M. A. (2005). The neural bases of intelligence: a perspective based on functional neuroimaging. In J. Sternberg and J. Pretz (Eds.), Cognition and Intelligence: Identifying the Mechanisms of the Mind (pp. 88-103). New York: Cambridge University Press.
  73. Nisbet, R., Blair, J., Dickens, W., Halpern, D., Flynn, J., & Tuckheimer, E. (2012). Intelligence: New findings and theoretical development. American Psychological Association, 67(2), 130-159. https://doi.org/10.1037/a0026699
  74. Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantics. NeuroImage, 22(1), 164-170. https://doi.org/10.1016/j.neuroimage.2003.12.010
  75. O'Boyle, M., Cunnington, R., Silk, T., Vaughan, D., Jackson, G., Syngeniotis, A., & Egan, G. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25(2), 583-587. https://doi.org/10.1016/j.cogbrainres.2005.08.004
  76. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology. 45(3), 255-287. https://doi.org/10.1037/h0084295
  77. Pascual-Leone, A., & Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116(1), 39-52. https://doi.org/10.1093/brain/116.1.39
  78. Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross cultural samples (n=3367): Overall sex differences and the roll of academic program in performance. Cortex, 42(7), 1005-1014. https://doi.org/10.1016/S0010-9452(08)70206-5
  79. Poincare, H. (1908). Science et Methode. Paris: Flammarion (translation in 1913).
  80. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Ravens Progressive Matrices Test. Cognitive Psychology, 33(1), 43-63. https://doi.org/10.1006/cogp.1997.0659
  81. Prescott, J., Gavrilescu, M., Cunnington, R., O''Boyle, M. W., & Egan, G. F. (2010). Enhanced brain connectivity in math-gifted adolescents: An fMRI study using mental rotation. Cognitive Neuroscience, 1(4), 277-288. https://doi.org/10.1080/17588928.2010.506951
  82. Preusse, F., van der Meer, E., Deshpande, G., Kreuger, F., & Wartenburger, I. (2011). Fluid intelligence allows flexible recruitment of parieto - frontal network in analogical reasoning. Frontiers in Human Neuroscience, 5(22), 1-14.
  83. Renzulli, J. S. (1978). What Makes Giftedness? Reexamining a Definition. Phi Delta Kappan, 60(3), 180-184.
  84. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779-1790. https://doi.org/10.1093/cercor/bhi055
  85. Rypma, B., Berger, J. Prabhakaran, B., Bly, B., Kimberq, D., Biswal, B., & E'spisto, M. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33(3), 969-979. https://doi.org/10.1016/j.neuroimage.2006.05.065
  86. Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage, 27(1), 188-200. https://doi.org/10.1016/j.neuroimage.2005.04.012
  87. Schmithorst, V. J., Holland, S. K. (2007). Sex differences in the development of neuroanatomical functional underlying intelligence found using Bayesian connectivity analysis. Neuroimage, 35(1), 406-419. https://doi.org/10.1016/j.neuroimage.2006.11.046
  88. Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(1), 82-102. https://doi.org/10.1037/0278-7393.9.1.82
  89. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 19(171), 701-703.
  90. Simon, T. J. (1999). The foundations of numerical thinking in a brain without numbers. Trends in Cognitive Sciences, 3(10), 363-365. https://doi.org/10.1016/S1364-6613(99)01383-2
  91. Singh, H., & O'Boyle, M. W. (2004). Interhemispheric interaction during global-local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18(2), 371-377. https://doi.org/10.1037/0894-4105.18.2.371
  92. Sorby, S., & Baartmans, B. (1996). A course for the development of 3-D spatial visualization skills. Engineering Design Graphics Journal, 60(1), 13-20.
  93. Sousa, D. (2009). How the gifted brain learns. New York, NY: Corwin.
  94. Spelke, E. S. (2003). Core knowledge. In N. Kanwisher & J. Duncan (Eds.), Attention and Performance: Functional neuroimaging of visual cognition (pp. 29-56). New York: Oxford University Press.
  95. Spinath, B., Freudenthaler, H. H., & Neubauer, A. C. (2010). Domain-specific school achieve ment in boys and girls as predicted by intelligence, personality and motivation. Personality and Individual Differences, 48(4), 481-486. https://doi.org/10.1016/j.paid.2009.11.028
  96. Squire, L. R. (1994). Declarative and non-declarative memory: Multiple brain systems supporing learning and memory. In D. L. Schacter & E. Tulving (Eds.), Memory Systems (pp. 203-231). Cambridge, MA: MIT Press.
  97. Strong, S., & Smith, R. (2001). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18(1), 1-6.
  98. Tang, Y., Zhang, W., Chen, K., Feng, S., Ti, Y., Shen, T. Reiman, E., & Liu, Y. (2006). Arithemetic Processing in the brain shaped by cultures. PNAS, 103(28), 10775-10780. https://doi.org/10.1073/pnas.0604416103
  99. Tanji, J. & Hoshi, E. (2008). Role of the lateral prefrontal cortex in executive behavioral control. Physiological Review, 88(1), 37-57. https://doi.org/10.1152/physrev.00014.2007
  100. Tomasi, D., Ernst, T., Caparelli, E. C., & Chang, L. (2004). Practice-induced changes of brain function during visual attention: a parametric fMRI study at 4 Tesla. Neuroimage, 23(4), 1414-1421. https://doi.org/10.1016/j.neuroimage.2004.07.065
  101. Tostos, M., Hanscombe, K., Haworth, C., Davis, O., Petrill, S., Dale, P., Malykh, S. Plomin, R., & Kovas, Y. (2014). Why do spatial abilities predict mathematical performance?. Developmental Science, 17(3), 462-470. https://doi.org/10.1111/desc.12138
  102. Uller, C., & Lewis, J. (2009). Horses(Equus caballus) select the greater of two quantities in small numerical quantities. Animal Cognition, 12(5), 733-738. https://doi.org/10.1007/s10071-009-0225-0
  103. van Nes, F., & Jan de Lange, J. (2007). Mathematics Education and Neuroscience: Relating spatial structures for the development of spatial sense and number sense. The Montana Council of Teachers of Mathematics, 4(2), 210-229.
  104. Varma, S., McCandliss, B. D., & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 37(3), 140-152. https://doi.org/10.3102/0013189X08317687
  105. Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Jung-Beeman, M. (2006). Neural activity of inferences during story comprehension. Brain Research. 1084(1), 104-114. https://doi.org/10.1016/j.brainres.2006.02.053
  106. von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
  107. Vygotsky, L. S. (1962). Thought and language. Cambridge MA: MIT Press.
  108. Whorf, B. L. (1940). Science and Linguistics. Technology Review, 42(6), 229-248.
  109. Wynn, K. (1992). Addition and subtraction by human infant. Nature, 358(6389), 749-750. https://doi.org/10.1038/358749a0

Cited by

  1. Relative Spectral Power Analysis of EEG Activity during Actions Involving Number Sense and Spatial Ability vol.29, pp.4, 2019, https://doi.org/10.29275/jerm.2019.11.29.4.805