• Title/Summary/Keyword: Real-Time Simulator

Search Result 774, Processing Time 0.03 seconds

Study on the Estimation of Collision Risk of Ship in Ship Handling Simulator using Fuzzy Algorithm and Environmental Stress Model (시뮬레이터 기반 퍼지알고리즘과 환경스트레스모델을 이용한 선박 충돌위험도 추정에 관한 연구)

  • Son, Nom-Sun;Kim, Sun-Young;Gong, In-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Recently, many maritime accidents have been increased and the collisions due to human error are given a great deal of proportions out of them We develop the Real-time Collision Risk Monitoring System (CRMS) for the navigational officers to cope with the emergency situation promptly and thus to reduce the probability of casualty. In this study, the risk of collision and grounding is evaluated by two kinds of method. The first method is based on Fuzzy algorithm, which evaluates the risk of collision between traffic ships. The second method is based on Environmental Stress (ES) Model, where the total risk of collision and grounding is evaluated by the environmental stress felt by human. The developed real-time CRMS has been installed to the ship handling simulator system and its capabilities have been tested through simulator experiments.

A Study on the Establishment of Aid-to-Navigation Management Platform through User Interface Implementation (User Interface 구현을 통한 항로표지 관리운영플랫폼 구축 방안에 관한 연구)

  • Hyunjin Kim;Jonghyun Park;Jeonggeun Chae
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Aid-to-Navigation facility is important for maritime traffic safety. In Korea, for safe maritime traffic, the Ministry of Oceans and Fisheries is using an Aid-to-Navigation management system. The current Aid-to-Navigation management system displays information based on text, making it difficult to determine the impact if Aid-to-Navigation fails or an accident occurs. A simulator can be used to verify the placement of Aid-to-Navigation. However, real-time information is not applied and maintenance of the simulator is expensive. Additionally, the Aid-to-Navigation simulator cannot simulate effects of port backlighting. To improve these issues, we proposed an Aid-to-Navigation management platform based on digital twin technology. This system can predict failures by analyzing real-time sensor data collected from navigation signs. We plan to develop a function that can simulate Aid-to-Navigation placement. Aid-to-Navigation is expected to be managed efficiently by applying digital twin technology.

Design of a Multi-Sensor Data Simulator and Development of Data Fusion Algorithm (다중센서자료 시뮬레이터 설계 및 자료융합 알고리듬 개발)

  • Lee, Yong-Jae;Lee, Ja-Seong;Go, Seon-Jun;Song, Jong-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.93-100
    • /
    • 2006
  • This paper presents a multi-sensor data simulator and a data fusion algorithm for tracking high dynamic flight target from Radar and Telemetry System. The designed simulator generates time-asynchronous multiple sensor data with different data rates and communication delays. Measurement noises are incorporated by using realistic sensor models. The proposed fusion algorithm is designed by a 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad data and sensor faults. The designed algorithm is verified by using both simulation data and actual real data.

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.

Development of a Simulation Training Simulator using KEPS (시뮬레이터 연계용 교육, 훈련 Mimic Board 시스템 개발)

  • Cha, S.T.;Kim, T.K.;Choi, J.H.;Kim, C.K.;Lee, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.68-69
    • /
    • 2006
  • A new type of simulation training system for power system operation is presented in this paper It is based on transmission mimic board, double screen PC, mimic control panel, and real-time digital simulator, KEPS. The operating simulation includes the simulations of the control panel interface and the simulator. The mimic board displays transmission network summary information using a software view of the hardware based mimic board. The symbols, numbers and colors layout exactly match those of the KEPS draft case to provide operators a familiar and effective starting point. This paper describes the development of an innovative training system, utilizing the benefits of 3 dimension visualization s/w and communication-control s/w to create the appropriate operational environment and allow simulation of various power system operations without the restrictions of other training methods. Experiences gained in developing concepts and meeting considerable s/w challenges are outlined, and the potential of the simulator for future operations training discussed.

  • PDF

A Study On Mathematical Model of Manoeuvring Motions of Twin-screw and Twin-rudder Ship for Construction of Real-time Ship-handling Simulator (시뮬레이터 구축을 위한 2축2타선박의 조종운동 수학모델에 관한 연구)

  • 손경호;김용민
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.3
    • /
    • pp.1-16
    • /
    • 2001
  • In view of the fact that marine casualties have more often occurred recently, there is a need for ship-handling simulator as a useful tool for maritime training, safety assessment and so on. Moreover various kinds of hull forms have appeared for the purpose of improving ship manoeuvrality. Therefore ship-handling simulator is in need of a database for various ships, and it can make diverse maneuvering simulations possible to apply respective mathematical model to ship-handling simulator. In this paper, we adopted twin-screw and twin-rudder ship and discussed mathematical model of maneuvering motions for her. It was discussed from the viewpoint of hull damping forces at low advance speed and interaction between hull, propeller and rudder. Using this model, maneuvering motion of twin-screw and twin-propeller ship was simulated numerically and her principal manoeuvrability was examined.

  • PDF

Pseudosteady-State Approach to Calculate Long-Time Performance of Closed Gas Reservoirs (유사정상상태 해법을 이용한 폐쇄 가스저류층의 장기거동 계산)

  • Lee Kun Sang
    • 한국가스학회:학술대회논문집
    • /
    • 1998.09a
    • /
    • pp.241-246
    • /
    • 1998
  • This paper considers the applicability of a pseudosteady-state approach to the long-time behavior of real gas flow in a closed reservoir. The method involves a combination of a linearized gas diffusivity equation using a normalized pseudotime and a material balance equation. Comparison with a commercial reservoir simulator showed that highly accurate values of pseudopressure drawdown and well pressure are obtained by the pseudosteady-state approach with much less computational effort.

  • PDF

TMO Based Real-Time Moving Information Generation Simulator (TMO 기반 실시간 이동 정보 생성 시뮬레이터)

  • 최재영;김문회
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.226-228
    • /
    • 2003
  • TMO 기반 실시간 이동 정보 생성 시뮬레이터는 적시성이 요구되는 이동 시뮬레이터를 위해 TMO (Time-triggered Message-triggered Object) 모델을 사용하여 적시에 이동 결과를 얻어낼 수 있는 도구이다. 이 TMO 기반 실시간 이동 정보 생성 시뮬레이터는 TMO 모델상에 이동구역을 처리하기 위한 맵 구조와 이동되어질 정보의 이동을 위한 간단한 이동 알고리즘을 내장하고 있다. 본 논문은 이러한 TMO 기반 실시간 이동 정보 생성 시뮬레이터의 구성 및 기능에 관하여 기술한다.

  • PDF

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.