• Title/Summary/Keyword: Rayleigh theory

Search Result 152, Processing Time 0.022 seconds

Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study

  • AlSaid-Alwan, Hiyam Hazim Saeed;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • In engineering structures, to having the projected structure to serve all the engineering purposes, the theory to be used during the modeling stage is also of great importance. In the present work, an analytical solution of the free vibration of the beam composed of functionally graded materials (FGMs) is presented utilizing different beam theories. The comparison of supposed beam theory for free vibration of functionally graded (FG) beam is examined. For this aim, Euler-Bernoulli, Rayleigh, Shear, and Timoshenko beam theories are employed. The functionally graded material properties are assumed to vary continuously through the thickness direction of the beam with respect to the volume fraction of constituents. The governing equations of free vibration of FG beams are derived in the frameworks of four beam theories. Resulting equations are solved versus simply supported boundary conditions, analytically. To verify the results, comparisons are carried out with the available results. Parametrical studies are performed for discussing the effects of supposed beam theory, the variation of beam characteristics, and FGM properties on the free vibration of beams. In conclusion, it is found that the interaction between FGM properties and the supposed beam theory is of significance in terms of free vibration of the beams and that different beam theories need to be used depending on the characteristics of the beam in question.

Vibration Analysis of Rotating Pre-twisted Inward Beams with a Concentrated Mass (집중질량과 초기 비틀림을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.384-390
    • /
    • 2015
  • The vibration analysis of rotating inward beams considering the pre-twisted is presented based on Euler-Bernoulli beam theory. The frequency equations, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their result.

Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials (경사기능재료를 사용한 회전하는 외팔보의 진동해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

Vibration Analysis of Rotating Inward Cantilever Beams With a Tip-Mass (집중질량을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.389-391
    • /
    • 2014
  • The Vibration Analysis of Rotating Inward Beams Considering The Tip-Mass is presented based on Euler-Bernoulli beam theory. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

  • PDF

The Stability of the Flexible Rotor Mounted on Circumferentially Grooved Floating Ring Journal Bearings (원주방향 급유홈 프로팅링 저널베어링으로 지지된 탄성 회전체의 안정성)

  • 정연민;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2205-2215
    • /
    • 1992
  • The stability of the flexible rotor mounted on circumferentially grooved floating ring journal bearings was investigated theoretically and experimentally. The floating ring journal bearing was analyzed by using JFO reformation boundary condition. The flexible shaft was analyzed by the finite element method based on Rayleigh beam theory. It was found that the measured ring speed agrees well with the theoretical results. The instability of the system due to not only the outer film but also the inner film of the bearing could be predicted by the theory which allows negative vapor pressure. The tendency that reducing the supply pressure of lubricant stabilizes the system was observed both experimentally and theoretically.

Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Bayones, F.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.277-296
    • /
    • 2015
  • The objective of this paper is to investigate the surface waves in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field. The theory of generalized surface waves has firstly developed and then it has been employed to investigate particular cases of waves, viz., Stoneley waves, Rayleigh waves and Love waves. The analytical expressions for displacement components, force stress and temperature distribution are obtained in the physical domain by using the harmonic vibrations. The wave velocity equations have been obtained in different cases. The numerical results are given and presented graphically in Green-Lindsay and Lord-Shulman theory of thermoelasticity. Comparison was made with the results obtained in the presence and absence of gravity, anisotropy, relaxation times and parameters for fibrereinforced of the material medium. The results indicate that the effect of gravity, anisotropy, relaxation times and parameters for fibre-reinforced of the material medium are very pronounced.

Linear Stability of Variable-Viscosity Fluid Layer under Convection Boundary Condition (대류 조건하의 가변 점성 유체층의 선형 안전성)

  • 송태호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.132-141
    • /
    • 1992
  • The critical condition for onset of Benard convection with variable viscosity .nu.=.nu.$_{0}$exp(-CT) has been obtained using a linear stability theory. The bottom wall is rigid while the upper surface may be either free or rigid. The two boundaries are subject to convective heat transfer. The critical Rayleigh numbers are presented up to maximum viscosity ratio of 3000. It is greater for smaller upper and/or lower surface Biot numbers. Its dependence on the viscosity ratio is complicated. However, a simple sublayer theory is found to be applicable for extremely large viscosity ratio. In such cases, the critical Rayleigh number and the critical wave number are functions of viscosity ratio and lower surface Biot number.r.

A Prediction of Infrared Spectrum of Rocket Plume with Considering Soot Particles (Soot 입자를 고려한 로켓 플룸의 적외선 스펙트럼 예측)

  • Jo, Sung Min;Nam, Hyun Jae;Kim, Duk Hyun;Kwon, Oh Joon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-36
    • /
    • 2015
  • In the present study, numerical predictions of infrared spectrum of rocket plume with considering effect of particles based on approximation theories were performed by using a line-by-line radiation model with radiation databases. The high-resolution radiation databases were used to predict thermal emission spectra of gas molecules within the rocket plume regime. The particles were modeled as soot particles by using 1st term approximation of Mie theory and Rayleigh approximation. The reliability of modeled effect of soot particles using the two approximation theories was verified, and the spectral radiance of rocket plume was predicted based on the verification. The results were improved in the short wavelength range by considering the effect of soot particles.

On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled functionally graded cylindrical shell

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Shahzad, Aamir;Taj, Muhammad;Asghar, Sehar;Fatahi-Vajari, Alireza;Singh, Rahul;Tounsi, Abdelouahed
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.363-380
    • /
    • 2020
  • In this paper, a cylindrical shell is immersed in a non-viscous fluid using first order shell theory of Sander. These equations are partial differential equations which are solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. Throughout the computation, simply supported edge condition is used. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Comparison is made for empty and fluid-filled cylindrical shell with circumferential wave number, length- and height-radius ratios, it is found that the fluid-filled frequencies are lower than that of without fluid. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Superresolution of Optical Imaging System (광결상계의 초분해능)

  • 조영민;김종태;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.349-355
    • /
    • 1994
  • Superrsolution of an optical imaging system, which resolves $\epsilon_O$ (half width of the square top amplitude impulse function) less than the Rayleigh's resolution limit $\epsilon_R$, is theoretically treated by using the diffraction theory, and an experimental system is proposed. Initially superresolution is stated as an inverse problem, and an integral equation is derived as a function of parameter $\beta$, which is positive. The integration is numerically carried out for the given aperture and those given values of $\beta$, which is 1, 5, 10, 15, and 20. 1/2$\times$FWHM's of the amplitude impulse functions are meassured for the cases of diffrent value of {J and in the case of $\beta=5$, the half-width already approaches to $\epsilon_O=0.1$,urn, which is, in the case of the present work, one fifth of the Rayleigh's resolution limit. It is found both the pupil function and the phase of the Huygens wave are to be modified, and theories of the pupil function modulation plate and the phase modulation hologram plate are also presented. The result obtained may be useful in ultrafine optical lithography.graphy.

  • PDF