• Title/Summary/Keyword: Rare Metal

Search Result 356, Processing Time 0.024 seconds

Focal epithelial hyperplasia arising after delivery of metal-ceramic fixed dental prosthesis

  • Park, Min-Woo;Cho, Young-Ah;Kim, Soung-Min;Myoung, Hoon;Lee, Jong-Ho;Lee, Suk-Keun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.555-558
    • /
    • 2014
  • Focal epithelial hyperplasia (FEH) is a human papillomavirus (HPV)-induced alteration of the oral mucosa that presents with a clinically distinct appearance. While other HPV-infected lesions such as squamous papilloma, verruca vulgaris, and condyloma acuminatum involve the skin, oral mucosa, and genital mucosa, FEH occurs only in the oral mucosa. The affected oral mucosa exhibits multiple papules and nodules with each papule/nodule being flat-topped or sessile. The affected region resembles the normal color of oral mucosa rather than appearing as a white color since the epithelial surface is not hyperkeratinized. Almost all cases present with multiple sites of occurrence. This rare, benign epithelial proliferation is related to low-risk HPV, especially HPV-13 and -32, and is not transformed into carcinoma. We report a case of FEH that arose on the attached gingiva of an East Asian male adult related to prosthesis without detection of any HPV subtype in HPV DNA chip and sequencing.

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan;Choi, Wooyeol;Kim, Youbin;Lee, Chanyong;Jun, Yongseok;Kim, Junhee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Current Status of Smelting and Recycling Technologies of Tungsten (텅스텐의 제련과 리사이클링 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2021
  • Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300-1700℃ in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.

Current Status of Titanium Recycling Technology (타이타늄의 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2021
  • Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.

Studies on the Sorption Behavior of Some Metal Ions using XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지를 이용한 몇 가지 금속이온의 흡착거동에 관한 연구)

  • Lee, Won;Kim, Mi-Kyoung;Kim, In-Whan;Kim, Jun-Yong;Kim, Jung-Sook
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-463
    • /
    • 2004
  • The sorption behavior of some metal ions on XAD-16-CTA chelating resin was investigated by batch method. The sorption of chelating resin was highly selective for Hf(IV), Zr(IV) and Th(IV) at pH 3.0 ~ 6.0 and the maximum sorption capacity of Zr(IV) ion was 0.81 mmol/g. It was successfully applied to the separation of several rare metal ions from mixed metal solutions by using CDTA, EDTA, NTA and $NH_4F$ as masking agent. The elution order of metal ions obtained from breakthrough capacity and the overall capacity at pH 4.0 was Zr(IV)>Th(IV)>Hf(IV)>U(VI)>Cu(II)>In(III)>Pb(II). Desorption characteristics for metal ions was investigated with desorption agents such as HCl, $HNO_3$, $HClO_4$. 2 M HCl showed high desorption efficiency. Th(IV) ion can be successfully separated from mixed metal ions by using XAD-16-CTA cheating resin.

Hg(II) ion- Selective Electrodes with Neutral Carriers of Macrocycles (거대고리 중성 운반체를 갖는 Hg(II)이온 선택성 전극)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.211-220
    • /
    • 1996
  • New thin-and diselena-crown ethers containing two suffer and selenium donor atoms have been prepared. And then, mercury ($Hg^{2+}$) ion-selective electrodes with PVC-plasticizer (STPB) based on some macrocycles as neutral carriers were also made. The electrochemical selectivities for various ions, and the effects for macrocycles, matrix of membranes, ratio of plasticizer to macrowcles, concentration and pH of test solution were investigated on the $Hg^{2+}$ ion-selective electrodes. The 1, 10-diselena-18-crown-6-PVC-STPB (sodium tetraphenylborate) exhibited good linear responses of ${28.2}\pm{0.6}$ decade-1 for $Hg^{2+}$ ion in the conientration ranges of $10^{-2}~10^{-6}$ M $Hg^{2+}$ ion. This electrode exhibited comparatively good selectivities for $Hg^{2+}$ ion in comparison with alkali and alkaline earth metal ions, some heavy metal ions and rare earth metal ion in the range of pH 2.5~6.0. In addition, this electrode was applied as a sensor in the titration of $Hg^{2+}$ ion with $1^-$ ion in water.

  • PDF

Adsorption Characteristic of Rare Earth Metal Ions on 1-Aza-15-Crown-5-Styrene (Hazardous Materials)-DVB Resin (1-Aza-15-Crown-5-Styrene (위험물)-DVB 수지에 의한 희토류 금속 이온들의 흡착 특성)

  • Roh, Gi-Hwan;Kim, Kwan-Chun;Kim, Sun-Hwa;Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand attached to styrene (a hazardous material) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 5% and 20% by a substitution reaction. The characteristic of these resins was confirmed by the content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, dielectric constant of solvents and crosslink on adsorption of metal ions by the synthetic resin adsorbent were investigated. The metal ion was showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order of uranium ($UO_2^{2+}$) > manganese ($Mn^{2+}$) > praseodymium ($Pr^{3+}$). The adsorption was in the order of 1%, 2%, 5%, and 20% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Measurements of Separation Properties of AM, ARM Oxidesin Molten LiC1 (AM, AEM 산화물들의 용융 LiC1에서의 분리 물성 측정)

  • 오승철;박병흥;강대승;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.363-367
    • /
    • 2003
  • Much attention has been given to an electrochemical reduction process for converting uranium oxide to uranium metal in molten salt. The process has the versatility of being adopted for reducing other actinide and rare-earth metals from their oxides. Using the metal oxide to be reduced as a integrated cathode designed originally and inert conductors as anodes, oxygen anions are removed from the cathode and oxidized at the surface of the anodes in a molten salt cell. However, the electrochemical properties of alkali and alkali-earth metal oxides in molten salt have not been investigated thoroughly, which made the process incomplete when it is considered as a unit process in a back-end fuel cycle. It is well known that cesium and strontium Isotopes in spent fuel are main contributors for head load. The properties of cesium, strontium, and barium oxides such as the dissolution rates and reduction potentials in molten LiC1 dissolving $Li_2O$ are examined.

  • PDF

Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process (인쇄회로기판 제조공정 중 발생한 슬러지 내 건식환원 처리를 통한 구리 회수를 위한 슬러지 분석 및 열역학적 계산)

  • Han, Chulwoong;Kim, Young-Min;Kim, Yong Hwan;Son, Seong Ho;Lee, Man Seung;Lee, Ki Woong
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.85-96
    • /
    • 2017
  • In this study, we tried to select a slag system capable of pyro-metallurgical process through analysis of sludge generated from PCB plating and etching process solution. Based on this, the possibility of extracting valuable metals in the sludge was studied by experimental and thermodynamic approaches. The sludge was dried at $100{\sim}500^{\circ}C$ and the morphology, chemical composition and phase of the sludge were analyzed. The possibility of pyro-metallurgical process of sludge was investigated through thermodynamic approach using FactSage software.