DOI QR코드

DOI QR Code

Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process

인쇄회로기판 제조공정 중 발생한 슬러지 내 건식환원 처리를 통한 구리 회수를 위한 슬러지 분석 및 열역학적 계산

  • Han, Chulwoong (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Kim, Young-Min (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Kim, Yong Hwan (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Son, Seong Ho (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Lee, Man Seung (Department of Advanced Material Science and Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Ki Woong (Sungeel Himetal)
  • 한철웅 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 김영민 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 김용환 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 손성호 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 이만승 (국립목포대학교 공과대학 신소재공학과) ;
  • 이기웅 (성일하이메탈)
  • Received : 2017.08.28
  • Accepted : 2017.09.15
  • Published : 2017.10.31

Abstract

In this study, we tried to select a slag system capable of pyro-metallurgical process through analysis of sludge generated from PCB plating and etching process solution. Based on this, the possibility of extracting valuable metals in the sludge was studied by experimental and thermodynamic approaches. The sludge was dried at $100{\sim}500^{\circ}C$ and the morphology, chemical composition and phase of the sludge were analyzed. The possibility of pyro-metallurgical process of sludge was investigated through thermodynamic approach using FactSage software.

본 연구에서는 PCB 도금 및 에칭 공정 중 발생한 슬러지의 분석을 통해 건식환원처리가 가능한 슬래그 시스템을 선정하고자 하였으며 이를 바탕으로 슬러지 내에 존재하는 유가금속의 회수 가능성에 대하여 실험적 및 열역학적 검토를 하였다. 슬러지는 $100{\sim}500^{\circ}C$의 온도구간에서 건조한 후 슬러지의 형상과 화학성분 및 상을 분석하였다. 슬러지의 건식환원처리 가능성은 FactSage를 이용한 열역학적 계산을 통해 조사하였다.

Keywords

References

  1. Josep LaDou, 2006 : Printed circuit board industry, Int. J. Hyg. Environ.-Health, 209, pp211-219. https://doi.org/10.1016/j.ijheh.2006.02.001
  2. Kui Huang, Jie Guo, and Zhenming Xu, 2009 : Recycling of waste printed circuit boards: A review of current technologies and treatment status in China, J. Hazard. Mater. 164. pp399-408. https://doi.org/10.1016/j.jhazmat.2008.08.051
  3. Chilton, N., 2012 : Printed circuit board fabrication, in inkjet technology for digital Fabrication, pp256-275, 1st edition, John Wiley & Sons, Ltd., UK.
  4. Z. Huang, F. Xie, and Y. Ma, 2011 : Ultrasonic recovery of copper and iron through the simultaneous utilization of printed circuit bard (PCB) spent acid etching solution and PCB sludge, J. Hazard. Mater. 185, pp155-161. https://doi.org/10.1016/j.jhazmat.2010.09.010
  5. Y.-L. Chen et al., 2011 : Hydration and leaching characteristics of cenent pastes mad from electroplating sludge, Waste Managenent, 31, pp1357-1363. https://doi.org/10.1016/j.wasman.2010.12.018
  6. Y. Tang, P.-Heng Lee, and K. Shih, 2013 : Copper sludge from printed circuit board production/recycling for ceramic materials: A quantitative analysis of copper transformation and immobilization, Environ. Sci. Technol. 47, pp8609-8615. https://doi.org/10.1021/es400404x
  7. T. Oishi et al., 2007 : Recovery o high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride sloutions, Hydrometallurgy, 89, pp82-88. https://doi.org/10.1016/j.hydromet.2007.05.010
  8. K. Koyama et al., 2006 : Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution, Mater. Trans. 47(7), pp1788-1792. https://doi.org/10.2320/matertrans.47.1788
  9. W. G. Davenport et al., 2011 : Extractive metallurgy of copper, pp346-363, 4th edition, Pergamon, UK.
  10. E. Y. L. Sum, 1991 : The recovery of metals from electronic scrap, JOM, 43(4), pp53-61. https://doi.org/10.1007/BF03220549
  11. J. E. Hoffmann, 1992 : Recovering precious metals from electronic scrap, Jom-J. Miner. Met. Mater. Soc. 44(7), pp43-48.
  12. B. S. Kim, J. C. Lee, and K. H. Lee, 2007 : A novel process for extracting valuable metals from waste electric and electronic scrap using waste copper slag by a high temperature melting method, J. of Korean Inst. of Resources Recycling, 16(3), pp27-33.
  13. D. Y. Shin et al., 2008 : Pyro-metallurgical treatment of used OA parts for the recovery of valuable metals, J. of Korean Inst. of Resources Recycling, 17(2), pp46-54.
  14. B. R. Han and H. S. shon, 2015 : Distribution behavior of Ni between CaO-$SiO_2$-$Al_2O_3$-MgO slag and Cu-Ni alloy, J. of Korean Inst. of Resources Recycling, 24(1), pp35-42. https://doi.org/10.7844/kirr.2015.24.1.35
  15. N. I. Song, I. S. Kim, and M. H. Lee, 2005, Study of remediation process using inorganic coagulants for heavy metal contaminated groundwater, J. of the Geological Society of Korea, 41(2), pp253-267.
  16. Y.-G. Hwang, S.-C. Kil, and J.-H. Kim, 2013 : Technology trends of metal recovery from wastewater, J. of Korean Inst. of Resources Recycling, 22(3), pp91-99. https://doi.org/10.7844/kirr.2013.22.3.91
  17. F. S. Pettit et al., 2006 : Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2nd edn.

Cited by

  1. PCB 제조 공정 중 발생한 슬러지 내 유가금속 회수를 위한 건식야금 공정에 관한 연구 vol.28, pp.6, 2019, https://doi.org/10.7844/kirr.2019.28.6.87
  2. PCB 제조 공정 중 발생한 슬러지 내 유가금속 회수를 위한 건식야금 공정에 관한 연구 vol.28, pp.6, 2019, https://doi.org/10.7844/kirr.2019.28.6.87