DOI QR코드

DOI QR Code

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Choi, Wooyeol (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Kim, Youbin (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Lee, Chanyong (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Jun, Yongseok (Graduate School of Energy and Environment (KU-KIST Green School), Korea University) ;
  • Kim, Junhee (Advanced Materials Component Research Center, Gumi Electronics & Information Technology Research Institute)
  • Received : 2019.04.05
  • Accepted : 2019.05.02
  • Published : 2019.09.30

Abstract

In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Keywords

References

  1. O'Regan, B. and Gratzel, M., Nature, 1991, 353(6346), 737-740. https://doi.org/10.1038/353737a0
  2. Kay, A. and Gratzel, M., Sol. Energy Mater. Sol. Cells, 1996, 44(1), 99-117. https://doi.org/10.1016/0927-0248(96)00063-3
  3. Parka, J.-G., Akhtar, M. S., Lia, Z. Y., Choa, D.-S., Leea, W. and Yang, O.-B., Electrochim. Acta, 2012, 85, 600-604. https://doi.org/10.1016/j.electacta.2012.07.110
  4. Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Luo, G., Lin, Y., Xie, Y. and Wei, Y., Chem. Soc. Rev., 2017, 46(19), 5975-6023. https://doi.org/10.1039/C6CS00752J
  5. Roy-Mayhew, J. D. and Aksay, I. A., Chem. Rev., 2014, 114(12), 6323-48. https://doi.org/10.1021/cr400412a
  6. Balasingam, S. K. and Jun, Y., Israel J. Chem., 2015, 55(9), 955-965. https://doi.org/10.1002/ijch.201400213
  7. Gao, M. R., Xu, Y. F., Jiang, J. and Yu, S. H., Chem. Soc. Rev., 2013, 42(7), 2986-3017. https://doi.org/10.1039/c2cs35310e
  8. Kwon, S. M., Won, J. K., Jo, J.-W., Kim, J., Kim, H.-J., Kwon, H.-I., Kim, J., Ahn, S., Kim, Y.-H., Lee, M.-J., Lee, H.-i., Marks, T. J., Kim, M.-G. and Park, S. K., Sci. Adv., 2018, 4(4), eaap9104. https://doi.org/10.1126/sciadv.aap9104
  9. Singh, E., Kim, K. S., Yeom, G. Y. and Nalwa, H. S., RSC Adv., 2017, 7, 28234-28249. https://doi.org/10.1039/C7RA03599C
  10. Wang, M., Anghel, A. M., Marsan, B. t., Ha, N.-L. C., Pootrakulchote, N., Zakeeruddin, S. M. and Gratzel, M., J. Am. Chem. Soc., 2009, 131(44), 15976-15977. https://doi.org/10.1021/ja905970y
  11. Wang, Y. C., Wang, D. Y., Jiang, Y. T., Chen, H. A., Chen, C. C., Ho, K. C., Chou, H. L. and Chen, C. W., Angew. Chem. Int. Ed., 2013, 52(26), 6694-6698. https://doi.org/10.1002/anie.201300401
  12. Gong, F., Wang, H., Xu, X., Zhou, G. and Wang, Z. S., J J. Am. Chem. Soc., 2012, 134(26), 10953-10958. https://doi.org/10.1021/ja303034w
  13. Gong, F., Xu, X., Li, Z., Zhou, G. and Wang, Z. S., Chem. Comm., 2013, 49 (14), 1437-1439. https://doi.org/10.1039/c2cc38621f
  14. Cai, T., Zhao, L., Hu, H., Li, T., Li, X., Guo, S., Li, Y., Xue, Q., Xing, W., Yan, Z. and Wang, L., Energy Environ. Sci., 2018, 11(9), 2341-2347. https://doi.org/10.1039/C8EE00822A
  15. Zhu, L., Teo, M., Wong, P. C., Wong, K. C., Narita, I., Ernst, F., Mitchell, K. A. R. and Campbell, S. A., Appl. Catal. A: General, 2010, 386(1-2), 157-165. https://doi.org/10.1016/j.apcata.2010.07.048
  16. Huang, H. H., De Silva, K. K. H., Kumara, G. R. A. and Yoshimura, M., Sci. Rep., 2018, 8(1), 6849. https://doi.org/10.1038/s41598-018-25194-1
  17. Carim, A. I., Saadi, F. H., Soriaga, M. P. and Lewis, N. S., J. Mater. Chem. A, 2014, 2(34), 13835-13839. https://doi.org/10.1039/C4TA02611J
  18. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. and Ruoff, R. S., Carbon, 2007, 45(7), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
  19. Kong, D., Wang, H., Lu, Z. and Cui, Y., J. Am. Chem. Soc., 2014, 136(13), 4897-4900. https://doi.org/10.1021/ja501497n
  20. Roy-Mayhew, J. D., Bozym, D. J., Punckt, C. and Aksay, I. A., ACS Nano, 2010, 4(10), 6203-6211. https://doi.org/10.1021/nn1016428
  21. Hauch, A. and Georg, A., Electrochim. Acta, 2001, 46(22), 3457-3466. https://doi.org/10.1016/S0013-4686(01)00540-0
  22. Lim, J., Ryu, S. Y., Kim, J., Jun, Y., Nanoscale Res. Lett., 2013, 8(1), 227. https://doi.org/10.1186/1556-276X-8-227

Cited by

  1. Applications of Ceramic/Graphene Composites and Hybrids vol.14, pp.8, 2019, https://doi.org/10.3390/ma14082071
  2. Graphene Nanoplatelets-Nickel Nanoparticles Hybrid Counter Electrodes for Low-Cost and Efficient Dye-Sensitized Solar Cells vol.10, pp.5, 2019, https://doi.org/10.1149/2162-8777/abf9ea