DOI QR코드

DOI QR Code

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Kim, Hanki (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Hwang, Kyo-Sik (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Jeong, Namjo (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Kim, Chan-Soo (Jeju Global Research Center, Korea Institute of Energy Research)
  • Received : 2019.01.02
  • Accepted : 2019.04.30
  • Published : 2019.09.30

Abstract

The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Keywords

References

  1. J. Veerman, R.M. de Jong, M. Saakes, S.J. Metz, G.J. Harmsen, J. Membrane Sci., 2009, 343, 7-15. https://doi.org/10.1016/j.memsci.2009.05.047
  2. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, J. Membrane Sci., 2009, 327, 136-144. https://doi.org/10.1016/j.memsci.2008.11.015
  3. Y. Mei, C.Y. Tang, Desalination, 2018, 425, 156-174. https://doi.org/10.1016/j.desal.2017.10.021
  4. R.E. Pattle, Nature, 1954, 174, 660. https://doi.org/10.1038/174660a0
  5. J.N. Weinstein, F.B. Leitz, Science, 1976, 191, 557-559. https://doi.org/10.1126/science.191.4227.557
  6. R.A. Tufa, S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova, G. di Profio, S. Velizarov, J. Goulao Crespo, K. Nijmeijer, E. Curcio, Appl. Energy, 2018, 225, 290-331. https://doi.org/10.1016/j.apenergy.2018.04.111
  7. P. Dlugolecki, J. Dabrowska, K. Nijmeijer, M. Wessling, J. Membrane Sci., 2010, 347, 101-107. https://doi.org/10.1016/j.memsci.2009.10.011
  8. D.A. Vermaas, M. Saakes, K. Nijmeijer, J. Membrane Sci., 2011, 385-386, 234-242. https://doi.org/10.1016/j.memsci.2011.09.043
  9. G. Enver, Z. Yali, S. Michel, N. Kitty, ChemSusChem, 2012, 5, 2262-2270. https://doi.org/10.1002/cssc.201200298
  10. E. Guler, W. van Baak, M. Saakes, K. Nijmeijer, J. Membrane Sci., 2014, 455, 254-270. https://doi.org/10.1016/j.memsci.2013.12.054
  11. H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, C.-S. Kim, J. Mater. Chem. A, 2015, 3, 16302-16306. https://doi.org/10.1039/C5TA03571F
  12. J. Gi Hong, Y. Chen, J. Membrane Sci., 2015, 473, 210-217. https://doi.org/10.1016/j.memsci.2014.09.012
  13. P. Dlugolecki, B. Anet, S.J. Metz, K. Nijmeijer, M. Wessling, J. Membrane Sci., 2010, 346, 163-171. https://doi.org/10.1016/j.memsci.2009.09.033
  14. D.A. Vermaas, M. Saakes, K. Nijmeijer, Environ. Sci. Technol., 2011, 45, 7089-7095. https://doi.org/10.1021/es2012758
  15. A. Daniilidis, D.A. Vermaas, R. Herber, K. Nijmeijer, Renew. Energ., 2014, 64, 123-131. https://doi.org/10.1016/j.renene.2013.11.001
  16. X. Zhu, W. He, B.E. Logan, J. Membrane Sci., 2015, 486, 215-221. https://doi.org/10.1016/j.memsci.2015.03.035
  17. M. Tedesco, E. Brauns, A. Cipollina, G. Micale, P. Modica, G. Russo, J. Helsen, J. Membrane Sci., 2015, 492, 9-20. https://doi.org/10.1016/j.memsci.2015.05.020
  18. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, J. Appl. Electrochem., 2010, 40, 1461-1474. https://doi.org/10.1007/s10800-010-0124-8
  19. O. Scialdone, C. Guarisco, S. Grispo, A.D. Angelo, A. Galia, J. Electroanal. Chem., 2012, 681, 66-75. https://doi.org/10.1016/j.jelechem.2012.05.017
  20. A. Daniilidis, R. Herber, D.A. Vermaas, Appl. Energ., 2014, 119, 257-265. https://doi.org/10.1016/j.apenergy.2013.12.066
  21. J. Luque Di Salvo, A. Cosenza, A. Tamburini, G. Micale, A. Cipollina, J. Environ. Manage., 2018, 217, 871-887. https://doi.org/10.1016/j.jenvman.2018.03.110
  22. M. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini, G. Micale, J. Membrane Sci., 2016, 500, 33-45. https://doi.org/10.1016/j.memsci.2015.10.057
  23. M. Tedesco, A. Cipollina, A. Tamburini, G. Micale, J. Membrane Sci., 2017, 522, 226-236. https://doi.org/10.1016/j.memsci.2016.09.015
  24. B.E. Logan, M. Elimelech, Nature, 2012, 488, 313. https://doi.org/10.1038/nature11477
  25. A. D'Angelo, M. Tedesco, A. Cipollina, A. Galia, G. Micale, O. Scialdone, Water Res., 2017, 125, 123-131. https://doi.org/10.1016/j.watres.2017.08.008
  26. O. Scialdone, A. Albanese, A. D'Angelo, A. Galia, C. Guarisco, J. Electroanal. Chem., 2013, 704, 1-9. https://doi.org/10.1016/j.jelechem.2013.06.001
  27. T.E. Lipman, What will power the hydrogen economy? Present and future sources of hydrogen energy, Analysis and report prepared for The Natural Resources Defense Council, Institute of Transportation Studies, publication no. UCD-ITS-RR-04-10, 2004.
  28. M. Turek, B. Bandura, Desalination, 2007, 205, 67-74. https://doi.org/10.1016/j.desal.2006.04.041
  29. M. Turek, B. Bandura, P. Dydo, Desalination, 2008, 221, 462-466. https://doi.org/10.1016/j.desal.2007.01.106
  30. Y. Kim, B.E. Logan, Environ. Sci. Technol., 2011, 45, 5834-5839. https://doi.org/10.1021/es200979b
  31. Y. Kim, B.E. Logan, P. Natl. Acad. Sci., 2011, 108, 16176-16181. https://doi.org/10.1073/pnas.1106335108
  32. J. Liu, G.M. Geise, X. Luo, H. Hou, F. Zhang, Y. Feng, M.A. Hickner, B.E. Logan, J. Power Sources, 2014, 271, 437-443. https://doi.org/10.1016/j.jpowsour.2014.08.026
  33. M.C. Hatzell, I. Ivanov, R. D. Cusick, X. Zhu, B.E. Logan, Phys. Chem. Chem. Phys., 2014, 16, 1632-1638. https://doi.org/10.1039/C3CP54351J
  34. M.C. Hatzell, X. Zhu, B.E. Logan, ACS Sustain. Chem. Eng., 2014, 2, 2211-2216. https://doi.org/10.1021/sc5004133
  35. X. Chen, C. Jiang, Y. Zhang, Y. Wang, T. Xu, J. Membrane Sci., 2017, 544, 397-405. https://doi.org/10.1016/j.memsci.2017.09.006
  36. J.W. Post, H.V.M. Hamelers, C.J.N. Buisman, Environ. Sci. Technol., 2008, 42, 5785-5790. https://doi.org/10.1021/es8004317
  37. M. Wang, Z. Wang, X. Gong, Z. Guo, Renew. Sust. Energ. Rev., 2014, 29, 573-588. https://doi.org/10.1016/j.rser.2013.08.090
  38. J.-H. Han, K.-s. Hwang, H. Jeong, S.-Y. Byeon, J.-Y. Nam, C.-S. Kim, H. Kim, S. Yang, J.Y. Choi, N. Jeong, J. Appl. Electrochem., 2019, 49, 517-528. https://doi.org/10.1007/s10800-019-01303-4
  39. B. Liu, L. Zhang, W. Xiong, M. Ma, Angew. Chem. Int. Edit., 2016, 55, 6725-6729. https://doi.org/10.1002/anie.201601367
  40. A. Kabza, Fuel Cell Formulary, 2015.
  41. N.Y. Yip, M. Elimelech, Environ. Sci. Technol., 2014, 48, 11002-11012. https://doi.org/10.1021/es5029316
  42. J. Veerman, J.W. Post, M. Saakes, S.J. Metz, G.J. Harmsen, J. Membrane Sci., 2008, 310, 418-430. https://doi.org/10.1016/j.memsci.2007.11.032
  43. D.A. Vermaas, E. Guler, M. Saakes, K. Nijmeijer, Energy Proced., 2012, 20, 170-184. https://doi.org/10.1016/j.egypro.2012.03.018
  44. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition. Wiley, New York, 2000.
  45. A.T. Kuhn, J.S. Booth, J. Appl. Electrochem., 1980, 10, 233-237. https://doi.org/10.1007/BF00726091
  46. X. Luo, J.-Y. Nam, F. Zhang, X. Zhang, P. Liang, X. Huang, B.E. Logan, Bioresource Technol., 2013, 140, 399-405. https://doi.org/10.1016/j.biortech.2013.04.097
  47. R.A. Tufa, J. Hnat, M. Nemecek, R. Kodym, E. Curcio, K. Bouzek, J. Clean. Prod., 2018, 203, 418-426. https://doi.org/10.1016/j.jclepro.2018.08.269
  48. M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy, 2013, 38, 4901-4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
  49. M. Robinius, T. Raje, S. Nykamp, T. Rott, M. Muller, T. Grube, B. Katzenbach, S. Kuppers, D. Stolten, Appl. Energy, 2018, 210, 182-197. https://doi.org/10.1016/j.apenergy.2017.10.117
  50. J. Xu, Q. Li, H. Xie, T. Ni, C. Ouyang, Renew. Sust. Energ. Rev., 2018, 82, 4279-4295. https://doi.org/10.1016/j.rser.2017.06.029
  51. Z.N. Ashrafi, M. Ghasemian, M.I. Shahrestani, E. Khodabandeh, A. Sedaghat, Int. J. Hydrogen Energy, 2018, 43, 3110-3132. https://doi.org/10.1016/j.ijhydene.2017.12.154

Cited by

  1. A serial system of multi-stage reverse electrodialysis stacks for hydrogen production vol.251, 2019, https://doi.org/10.1016/j.enconman.2021.114932