• 제목/요약/키워드: Range Measurement

검색결과 4,359건 처리시간 0.039초

Quality Evaluation of Ultrasonographic Equipment Using an ATS-539 Multipurpose Phantom in Veterinary Medicine

  • Cho, Young-kwon;Lee, Youngjin;Lee, Kichang
    • 한국임상수의학회지
    • /
    • 제39권3호
    • /
    • pp.114-120
    • /
    • 2022
  • The purpose of this study is to examine the status of quality control using multipurpose phantom of ultrasound equipment used in hospital of veterinary college in South Korea by using ATS-539 multipurpose phantom so as to examine quantitative and objective new image evaluation method. Specialists discussed and analyzed multipurpose phantom images acquired by using convex transducer of 10 ultrasound imaging devices, currently used in 9 veterinary colleges, at 4.0-6.0 MHz. Total 8 items that can be measured with ATS-539 multipurpose phantom including dead zone, vertical and horizontal measurement, axial/lateral resolution, sensitivity, focal zone, functional resolution and gray scale/dynamic range were evaluated. For qualitative evaluation, valid decisions were made based on dead zone, axial/lateral resolution, and gray scale/dynamic range which are resolution index, and coefficient of variation (COV) and blind referenceless image spatial quality evaluator (BRISQUE) were found to increase objectivity. As a result of experiment, all the targeted ultrasonic devices were found appropriate from qualitative evaluation items of dead zone, axial/lateral resolution, and gray scale/dynamic range. In other evaluation items, they were found to be appropriate from focal zone and vertical measurement of quantitative evaluation while inappropriate from horizontal measurement, sensitivity, and functional resolution. COV value was 0.12 ± 0.04, and BRISQUE value was 47.77 ± 2.77, both analysis results show that the noise level of all ultrasonic devices was located within tolerance range. Upon image examination using ATS-539 multipurpose phantom, they were 100% appropriate with inspection standards of dead zone, axial/lateral resolution, and gray scale/dynamic range, and besides, focal zone and functional resolution can be used as evaluation items. In the field of veterinary medicine, 8 standard items using ATS-539 multipurpose phantom and image evaluation items using COV and BRISQUE can be used as standards for quality control of ultrasonography machine.

Improvement of a Pound-Drever-Hall Technique to Measure Precisely the Free Spectral Range of a Fabry-Perot Etalon

  • Seo, Dong-Sun;Park, Chongdae;Leaird, Daniel E.;Weiner, Andrew M.
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.357-362
    • /
    • 2015
  • We examine the principle of a modified Pound-Drever-Hall (PDH) technique to measure the free spectral range of a Fabry-Perot etalon (FPE). The FPE's periodic transmission of phase-modulated light allows us to adopt a sampling theorem to develop a new relationship for the PDH error signal. This leads us to find the key parameters governing the measurement accuracy: the phase modulation index ${\beta}$ and the FPE finesse. Without any additional complexity for background noise reduction, we achieve a measurement accuracy of 0.5 ppm. The improvement is mainly attributed to the wide-band phase modulation approaching ${\beta}=10$, and partly to the use of both reflected and transmitted light from the FPE and good FPE finesse.

424 MHz 소출력 무선주파수 전파특성 측정 및 분석 (The Measurement and Analysis of Radio Characteristic of 424 MHz Short Range Wireless Frequency)

  • 임용훈;최효열;오규환;이범석;현덕화
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.437-442
    • /
    • 2005
  • This paper deals with the measurement and analysis of radio characteristic of 424 MHz for using the automation of transmission and supply of electric power, ana automatic meter reading(AMR). Normally radio propagation characteristic is the base of system design, performance evaluation and choice of position of the base station in wireless communication. It is the most accurate way to design a base station through practical measurements, but it costs much time, money and engineers. So, we developed 424 MHz short range wave propagation model for AMR service.

  • PDF

전자기파 부분방전 신호의 권선 투과 특성 (Partial Discharge Electromagnetic Wave Penetration Characteristics Throughout Transformer Winding)

  • 주형준;한기선;윤진열
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.809-813
    • /
    • 2010
  • Frequency domain measurement of propagation loss for ultra high frequency (UHF) partial discharge in the winding of power transformer using a spectrum analyzer and pulse generator is presented. We compared the performance of the method using a network analyzer with and without a winding. Using a network analyzer simplifies the measurement and offers better dynamic range and frequency range. It also provides precise propagation loss within the winding in frequency domain at UHF range. We applied this method to measure UHF propagation loss of transformer mock-up, modeled 154 kV 20 MVA power in KEPCO substation.

Continuous Viscosity Measurement of Non-Newtonian Fluids over a Range of Shear Rates Using a Mass-Detecting Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.255-261
    • /
    • 2002
  • A newly designed mass-detecting capillary viscometer uses a novel concept to continuously measure non-Newtonian fluids viscosity over a range of shear rates. A single measurement of liquid-mass variation with time replaces the now rate and pressure drop measurements that are usually required by capillary tube viscometers. Using a load cell and a capillary, we measured change in the mass flow rate through a capillary tube with respect to the time, m(t), from which viscosity and shear rate were mathematically calculated. For aqueous polymer solutions, excellent agreement was found between the results from the mass-detecting capillary viscometer and those from a commercially available rotating viscometer. This new method overcomes the drawbacks of conventional capillary viscometers meassuring non-Newtonian fluid viscosity. First, the mass-detecting capillary viscometer can accurately and consistently measure non -Newtonian viscosity over a wide range of shear rate extending as low as 1 s$\^$-1/. Second, this design provides simplicity (i. e., ease of operation, no moving parts), and low cost.

다주파수 신호를 사용한 회전물체의 위상과 진폭측정에 의한 영상 (Multifrequency Imaging of Radar Turntable by Phase and Amplitude Measurement)

  • 서경환;이경수;김세윤;라정웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.392-397
    • /
    • 1987
  • This paper concerns a method for micro-wave imaging. The image reconstruction of a perfect conducting cylinder by phase and amplitude measurement using the X-Band multifrequency is presented troll the simulated data. The high degree of range resolution is achieved using large signal band-width and cross-range resolution is obtained by doppler processing. The comparison of image reconstruction between range doppler processing and circular convolution algorithm is also shown.

  • PDF

Analysis of Indoor Robot Localization Using Ultrasonic Sensors

  • Naveed, Sairah;Ko, Nak Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.41-48
    • /
    • 2014
  • This paper analyzes the Monte Carlo localization (MCL) method, which estimates the pose of an indoor mobile robot. A mobile robot must know where it is to navigate in an indoor environment. The MCL technique is one of the most influential and popular techniques for estimation of robot position and orientation using a particle filter. For the analysis, we perform experiments in an indoor environment with a differential drive robot and ultrasonic range sensor system. The analysis uses MATLAB for implementation of the MCL and investigates the effects of the control parameters on the MCL performance. The control parameters are the uncertainty of the motion model of the mobile robot and the noise level of the measurement model of the range sensor.

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Long Range UHF RFID Tag with a Rectangular Metallic Cavity Structure

  • Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제10권3호
    • /
    • pp.121-126
    • /
    • 2010
  • A long range UHF RFID tag with a rectangular metallic cavity structure is proposed for various applications with metallic objects. The proposed tag consists of a rectangular metallic cavity structure and a folded dipole antenna which is located on top of the cavity. The tag is designed for Korean UHF RFID band(910~914 MHz) and the bandwidth, which satisfies the -10 dB input reflection coefficient requirement, is approximately 1.3 %(904~916 MHz). Measurement demonstrates that the proposed tag shows long reading range up to 15 m when it is placed on a metallic plate.

New Metric For Short-Range Uniformity of AMOLEDs

  • Arkhipov, Alexander;Lee, Baek-Woon;Park, Kyong-Tae;Kim, Chi-Woo;Lee, Jin-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.488-491
    • /
    • 2008
  • The variations of the TFT characteristics in AMOLEDs result in the decrease of the uniformity of the displays. Measurement of the long-range uniformity (LRU) is straightforward. However, there is no method for measuring the short-range uniformity (SRU) yet. Quantifying the SRU is important in evaluating various TFT backplanes and compensation circuits. We propose new methods for measuring SRU.

  • PDF