• Title/Summary/Keyword: Range Measurement

Search Result 4,365, Processing Time 0.032 seconds

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Coherent Pulse Train Based Velocity Estimation and Compensation for High Resolution Range Profile of Moving Target in Stepped Frequency Radar (계단 주파수 레이더에서 이동표적의 고해상도 거리 추정을 위한 코히어런트 펄스열 기반의 속도 추정 및 보상)

  • Sim, Jae-Hun;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.309-315
    • /
    • 2018
  • A Stepped Frequency Radar(SFR) is a method of achieving high range resolution by gradually increasing the frequency of a transmitted pulse to create a wide synthetic bandwidth. However, in the case of moving target, accurate range estimation can not be performed due to the range-Doppler coupling phenomenon, so it is necessary to compensate through accurate velocity estimation. In this paper, we propose a stepped frequency radar waveform with a Coherent Pulse Train(CPT), velocity estimation results according to parameters using this method and VMD(Velocity Measurement Data) were compared and analyzed by numerical simulations.

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line (광 지연선 기반의 넓은 고도 범위를 갖는 고정밀 FMCW 전파고도계 송수신기 설계)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1190-1196
    • /
    • 2014
  • This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

The Reliability and Validity of Hip Range of Motion Measurement using a Smart phone Operative Patient (엉덩관절 수술 환자에서 스마트폰을 이용한 관절가동범위 측정의 신뢰도 및 타당도 연구)

  • Park, Sun-Wook;Kim, Myoung-Soo;Bae, Hyo-Sun;Cha, Yong-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE: The aims of this study were to assess the intra-tester and inter-tester reliability and validity of hip range of motion using a smart phone in hip operative patients. METHODS: Twenty-five patients (eight total hip arthroplasty and seventeen femur neck fracture) participated in this study. The range of motions in active and passive hip flexion, abduction and external rotation were measured with a goniometer and smart phone over two times by two observers. The intra-tester and inter-tester reliability were evaluated using the intraclass correlation coefficient (ICC2,1). The validity was measured by Pearson's correlation coefficient RESULTS: The intra-observer reliability was good in all measured items (ICC>0.78). The inter-observer reliability was high with ICC (>0.90). All correlation coefficients of smart phone and goniometer was greater than 0.85 and showed a significant positive correlation (p<0.01). CONCLUSION: The range of motion measurement with a smart phone showed acceptable reliability. Therefore, it could be convenient and have economical benefits to measure the range of motion of the hip joint using a smart phone.

An Empirical Study of the Clinically Reportable Range in Clinical Chemistry (임상보고 가능범위의 실증적 연구)

  • Chang, Sang-Wu;Lee, Sang-Gon;Choi, Ho-Seong;Song, Eun-Young;Park, Yong-Won;Lee, In-Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • The purpose of the clinically reportable range (CRR) in clinical chemistry is to estimate linearity in working range. The reportable range includes all results that may be reliably reported, and embraces two types of ranges: the analytical measurement range (AMR) is the range of analyte values that a method can directly measure on the specimen without any dilution, concentration, or other pretreatment not part of the usual assay process. CAP and JCAHO require linearity on analyzers every six months. The clinically reportable range is the range of analyte values that a method can measure, allowing for specimen dilution, concentration, or other pretreatment used to extend the direct analytical measurement range. The AMR cannot exceed the manufacturer's limits. Establishing AMR is easily accomplished with Calibration Verification Assessment and experimental Linearity. For example: The manufacturer states that the limits of the AST on their instrument are 0-1100. The lowest level that could be verified is 2. The upper level is 1241. The verified AMR of the instrument is 2-1241. The lower limit of the range is 2, because that is the lowest level that could be verified by the laboratory. The laboratory could not use the manufacturer's lower limit of 2 because they have not proven that the instrument values below 2 are valid. The upper limit of the range is 1241, because although the lab has shown that the instrument is linear to 1241, the manufacturer does not make that claim. The laboratory needs to demonstrate the accuracy and precision of the analyzer, as well the validation of the patient AMR. Linearity requirements have been eliminated from the CLIA regulations and from the CAP inspection criteria, however, many inspectors continue to feel that linearity studies are a part of good lab practice and should be encouraged. If a lab chooses to continue linearity studies, these studies must fully comply with the calibration/calibration verification requirements of CLIA and/or CAP. The results of lower limit and upper limit of clinically reportable range were total protein (2.1 - 79.9), albumin (1.3 - 39), total bilirubin (0.2 - 106.2), alkaline phosphatase (13 - 6928.2), aspartate aminotransferase (24 - 7446), alanine aminotransferase (13 - 6724.2), gamma glutamyl transpeptidase (16.64 - 9904.2), creatine kinase (15.26 - 4723.8), lactate dehydrogenase (127.66 - 13231.8), creatinine (0.4 - 129.6), blood urea nitrogen (8.67 - 925.8), uric acid (1.6 - 151.2), total cholesterol (48.52 - 3162), triglycerides (36.91 - 3367.8), glucose (31 - 4218), amylase (21 - 6694.2), calcium (3.1 - 118.2), inorganic phosphorus (1.11 - 108), HDL (11.74 - 666), NA (58.3 - 1800), K (1.0 - 69.6), CL (38 - 1230).

  • PDF

Out-of-Band Measurement of LED-based Solar Blind UV Filters

  • Cui, Muhan;Zhou, Yue;Chen, Xue;Yan, Feng;Zhang, Mingchao;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.244-250
    • /
    • 2014
  • Due to the difficulty in measuring very low out-of-band cutoff depths of solar blind UV filters, we propose a cutoff depth adjustable measurement system (CDAM) to test deep cutoff filters with a large dynamic range. The CDAM utilizing the substitution method is elaborately composed of several parts, including narrow-band LED light sources, standard reflective neutral attenuators with known attenuation coefficients, and a photomultiplier (PMT). This paper also presents an attenuator combination method ensuring that the PMT works within its linear response range. In addition, numerical simulation testifies to the method, and experiment shows that the CDAM system can achieve an extension of dynamic range from 0-6 OD to 0-10 OD, which is sufficient for the measurement of out-of-band cutoff depths of solar blind UV filters. Above all, the CDAM system, being easily implemented, of wide dynamic range, and highly precise, could be widely used in the measurement of filter cutoff depth.

Liver Size Measurement Method by Ultrasonography and Reference Range based on Normal Adult Physique Index (초음파검사에 의한 간 크기 측정방법 및 정상 성인의 체격지수별 참조범위)

  • Kim, Yong-Kyun;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • Liver size is an important component in the diagnosis and follow-up of diffuse liver disease when testing for liver disease using ultrasonography. However, difficulties lies in determining the presence of hepatomegaly and liver atrophy because the method used for measuring liver size differs from one examiner to another and there is no relevant standard based on body build. The present study aims to propose a more objective method for liver size measurement and a reference range based on body build. A total of 260 normal adults (130 males, 130 females) participated in the study. Ultrasonography was performed in all participants to measure the size of the right lobe, left lobe, quadrate lobe, and caudate lobe of liver. Based on Physique Index(PI), a value derived from multiplying weight(kg) by height($m^2$), size of physique was divided into three groups including Group I with PI<150, Group II with $150{\leq}PI{\leq}250$, and Group III with PI>250. Thus, mean liver size by PI and a reference range with 95% reliability were suggested. The superoinferior diameter of right lobe was $12.34{\pm}1.18cm$ in males and $11.07{\pm}0.93cm$ in females, and its reference range was 10.64~11.0cm for Group I, 11.78~12.12cm for Group II, and 13.02~13.84cm for Group III. The anteroposterior diameter(T) of left lobe was $5.93{\pm}1.09cm$ in males and $5.18{\pm}0.99cm$ in females, and its reference range was 4.77~5.17cm for Group I, 5.49~5.79cm for Group II, and 6.68~7.44cm for Group III. The transverse diameter was $3.51{\pm}0.60cm$ in male participants and $3.42{\pm}0.49cm$ in female participants and its reference range was 3.29~3.51cm for Group I, 3.36~3.55cm for Group II, and 3.52~4.0cm for Group III. The caudate lobe index was $11.65{\pm}2.88cm^2$ in males and $9.62{\pm}2.18cm^2$ in females and its reference range was $8.83{\sim}9.75cm^2$ for Group I, $10.62{\sim}11.47cm^2$ for Group II, and $11.89{\sim}14.26cm^2$ for Group III. As a basic measurement method of liver size, the present study suggests measuring the superoinferior diameter for right liver lobe, the anteroposterior diameter for left liver lobe, the transverse diameter for quadrate lobe, and the caudate lobe index for caudate lobe. It is expected that this method along with its relevant reference range can be used as useful indicators in determining hepatomegaly and liver atrophy upon the diagnosis and follow-up testing of diffuse liver disease.

Aging Measurement and Compensation for OLED Panel (OLED 패널의 노화 측정 및 보상)

  • Jeong, Kyung-Joong;Jeong, Hong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1009-1010
    • /
    • 2008
  • This paper presents a real-time aging measurement and feasible compensation system for the prolonged lifetime of OLED panel. The proposed system is composed of four parts, a PC with a man-machine interface, a measurement block, an adaptive amplifier block, and a compensation block. We apply a tree algorithm for less complexity and convenience of measurement on the degree of aging. An adaptive multi-stage differential amplifier is also implemented to deal with a various range of input voltages at the same spot.

  • PDF

Design and Implementation of High Power Source Measurement Unit (고 전력 Source Measurement Unit의 설계 및 제작)

  • Lee, Sang-Gu;Baek, Wang-Gi;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.860-863
    • /
    • 2003
  • In this paper high power SMU(Source Measurement Unit) having 50V/1.5A source/measure range has been designed and implemented. The SMU has two operation mode, voltage mode and current mode. The SMU can be used as variable voltage source, variable current source, voltage meter, or current meter. Combining two different unit, output power can be doubled as 100V/1.5A. The developed SMU tan be used many semiconductor testing system and electronic device inspecting system.

  • PDF