DOI QR코드

DOI QR Code

Range estimation of underwater vehicles using superimposed chirp signals

중첩된 처프 신호를 이용한 수중 이동체의 거리 추정

  • Received : 2023.07.06
  • Accepted : 2023.08.21
  • Published : 2023.11.30

Abstract

Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

수중 이동체의 시험평가 과정에서 정확한 거리 추정은 중요한 요소 가운데 하나이다. 특히, 도달 시간 값을 이용하여 거리를 추정하는 경우 상관 특성 등으로 인해 처프 신호인 Linear Frequency Modulation(LFM)과 같은 신호의 적용성이 높다. 하지만 이동성이 있는 도플러 천이 환경에서는 거리-도플러 커플링 효과로 인하여 측정 오류가 발생할 수 있다. 이에 본 논문에서는 거리-도플러 커플링 효과를 보상하여 도달 시간 값의 측정 오류를 감소시키는 신호를 제시한다. 제안된 신호는 2종류의 LFM 신호를 중첩하여 구성하였으며, 거리-도플러 커플링 효과를 최소화할 수 있다. 시뮬레이션을 통해 제안된 신호가 수중 이동체의 거리 추정에 있어서 거리-도플러 커플링 효과를 보상하여 도달 시간 값의 측정 오류를 줄이는 방법임을 확인하였다.

Keywords

Acknowledgement

본 논문은 LIG넥스원의 연구비 지원으로 이루어졌습니다.

References

  1. G. Yu, T. C. Yang, and S. Piao, "Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: Evaluation of performance with experimental data," J. Acoust. Soc. Am. 142, 2047-2057 (2017). https://doi.org/10.1121/1.5005888
  2. X. Chen, Z. Liu, and X. Wei, "Fast FRFT-based algorithm for 3-D LFM source localization with uniform circular array," IEEE Access, 6, 2130-2135 (2017). https://doi.org/10.1109/ACCESS.2017.2781798
  3. M. Han, J. Y. Choi, K. Son, and P. H. Lee, "Performance improvement of underwater target distance estimation using blind deconvolution and time of arrival method" (in Korean), J. Acoust. Soc. Kr. 36, 378-386 (2017).
  4. W.-J. Park, K.-M. Kim, M. Han, and J.-Y. Choi, "Range estimation of underwater acoustic moving source using Doppler frequency map" (in Korean), J. Acoust. Soc. Kr. 36, 413-418 (2017).
  5. D.-H. Shin and T.-K. Sung, "Comparisons of error characteristics between TOA and TDOA positioning," IEEE Trans. Aerosp. Electron. Syst. 38, 307-311 (2002). https://doi.org/10.1109/7.993253
  6. Z. Lin, "Wideband ambiguity function of broadband signals," J. Acoust. Soc. Am. 83, 2108-2116 (1988). https://doi.org/10.1121/1.396391
  7. A. D. Waite, Sonar for Practising Engineers, 3rd Ed. (John Willey & Sons, New Jersey, 2002), pp. 192-195.
  8. F. Wang, S. Du, W. Sun, Q. Huang, and J. Su, "A method of velocity estimation using composite hyperbolic frequency-modulated signals in active sonar," J. Acoust. Soc. Am. 141, 3117-3122 (2017). https://doi.org/10.1121/1.4982724
  9. P. Liu and C. Song, "SCH: A speed measurement method of combined hyperbolic frequency modulation signals," IEEE Access, 9, 95986-95993 (2021). https://doi.org/10.1109/ACCESS.2021.3094540
  10. Y. Peng, C. Song, L. Qi, P. Liu, Y. Dong, Y. Yang, B. Zhang, and Z. Qi, "JLHS: A joint linear frequency modulation and hyperbolic frequency modulation approach for speed measurement," IEEE Access, 8, 205316-205326 (2020). https://doi.org/10.1109/ACCESS.2020.3037801
  11. C. Cho and E. Jeong, "Underwater object radial velocity estimation method using two different band hyperbolic frequency modulation pulses with opposite sweep directions and its performance analysis" (in Korean), J. Acoust. Soc. Kr. 42, 25-31 (2023).
  12. B. Zhang, P. Liu, H. Zhao, Y. Peng, Z. Liang, and Y. Yang, "Research on LFM combined signal ranging method," Proc. IEEE 4th ICEICT, 357-362 (2021).
  13. C. Aubry, P.-J. Bouvet, A. Pottier, Y. Auffret, and P. Forjonel, "On the use of Doppler-shift estimation for simultaneous underwater acoustic localization and communication," Proc. IEEE OCEANS, 1-5 (2019).