DOI QR코드

DOI QR Code

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line

광 지연선 기반의 넓은 고도 범위를 갖는 고정밀 FMCW 전파고도계 송수신기 설계

  • Received : 2014.09.04
  • Accepted : 2014.10.20
  • Published : 2014.11.30

Abstract

This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).

본 논문은 넓은 고도 범위와 낮은 측정 오차를 갖는 주파수 변조 연속파(FMCW) 레이더 고도계의 설계 방안을 제안한다. 측정 고도의 동적 범위를 줄이기 위해 전파 고도계의 송신 경로에 광 지연선을 적용하여 넓은 고도 범위를 얻을 수 있다. 송신 전력과 수신단 이득을 제어하여 또한 수신 전력의 동적 범위를 줄일 수 있다. 더불어, 직접 디지털 합성기를 사용하여 변조 선형성을 향상시키고, 기준 클럭 신호를 위상 고정 루프의 옵셋(offset) 주파수로 사용하여 위상잡음을 최소화함으로써 낮은 고도 측정오차를 갖는다.

Keywords

References

  1. D. Cailliu, V. Zlotnicki, "Precipitation detection by the TOPEX/Poseidon dual frequency radar altimeter, TOPEX microwave radiometer, special sensor microwave/imager and climatological shipboard reports", IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 205-213, Jan. 2000. https://doi.org/10.1109/36.823913
  2. G. D. Quartly, "Optimizing ${\sigma}_0$ information from the Jason-2 altimeter", IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 398-402, Jul. 2009. https://doi.org/10.1109/LGRS.2009.2013973
  3. P. A. M. Berry, R. G. Smith, M. K. Salloway, and J. Benveniste, "Global analysis of EnviSat burst echoes over inland water", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1980-1984, May 2012. https://doi.org/10.1109/TGRS.2011.2170695
  4. G. Alberti, L. Festa, C. Papa, and G. Vingione, "A waveform model for near-nadir radar altimetry applied to the Cassini mission to Titan", IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2252-2261, Jul. 2009. https://doi.org/10.1109/TGRS.2009.2012718
  5. N. Galin, A. Worby, T. Markus, C. Lueschen, and P. Gogineni, "Validation of airborne FMCW radar measurements of snow thickness over sea ice in Antarctica", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 1, pp. 3-12, Jan. 2012. https://doi.org/10.1109/TGRS.2011.2159121
  6. H. E. Bingol, B. Akin, and O. KOC, "Radar altimeter as a navigation aid using hierarchical elevation map clustering", in Proc. IEEE Position Location and Navigation Symp., pp. 377-381, 2012.
  7. J. L. Campbell, M. U. de. Haag, "Assessment of radar altimeter performance when used for integrity monitoring in a synthetic vision system", in Proc. 20th Digital Avionics Systems, vol. 1, Oct. 2001.
  8. J. W. Joyce, "Radar Altimeter", U. S patent 6,992,614, Jan. 2006.
  9. H. D. Griffiths, "New ideas in FM radar", Electron. Commun. Eng. J., vol. 2, no. 5, pp. 185-194, Oct. 1990. https://doi.org/10.1049/ecej:19900043
  10. P. D. L. Beasley, "The influence of transmitter phase noise on FMCW radar performance", European Microw. Conf. Proc., pp. 331-334, Sep. 2006.
  11. K. Lin, Y. E. Wang, C. K. Pao, and Y. C. Shih, "A Ka-band FMCW radar front-end with adaptive leakage cancellation", IEEE Trans. Microw. Therory and Tech., vol. 54, no. 12, pp. 4041-4048, Dec. 2006. https://doi.org/10.1109/TMTT.2006.885882
  12. J. H. Choi, M. S. Kim, S. H. Shin, and Y. G. Yang, "Low phase noise S-band PLL frequency synthesizer using DDS and offset mixing techniques", Asia-Pacific Microw. Conf. Proc., pp. 1409-1412, Dec. 2009.
  13. X. Gai, G. Liu, S. Chartier, A. Trasser, and H. Schumacher, "A PLL with ultra low phase noise for millimeter wave applications", European Microw. Conf. Proc. pp. 69-72, Sep. 2010.