• Title/Summary/Keyword: Rainfall Frequency

Search Result 684, Processing Time 0.024 seconds

Characteristics Analyses of Timely Rainfall Events Above Probability Precipitation on Each Frequency (빈도별 확률강우량을 초과하는 시간강우사상의 특성 분석)

  • Oh, Tae Suk;Kim, Eun Cheol;Moon, Young-Il;Ahn, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.513-526
    • /
    • 2009
  • The flood control countermeasure establish for reducing of the flood damages. Design frequency usually reflects the current situation of the station, the importance and the design rainfall. Therefore, this study calculated frequency for duration maximum rainfall with the area which happened the flood damages by main heavy rainfall events recently. Also, to analyze for the temporal characteristics of rainfall event exceed by design rainfall, excess rainfall and excess frequency and excess rainfall per event calculated. To grasp the temporal variation, About excess rainfall and excess frequency and excess rainfall per event have analyzed by change and trend test. Also, rainfall observatory did grouping by cluster analysis using position of rainfall observatory and characteristic timely rainfall. For the grouping rainfall observatory by the cluster analysis calculated average of excess rainfall and excess frequency and excess rainfall per event. To compare for the temporal characteristics, the change and trend test had analyzed about excess rainfall, excess frequency by regional groups.

The history of high intensity rainfall estimation methods in New Zealand and the latest High Intensity Rainfall Design System (HIRDS.V3)

  • Horrell, Graeme;Pearson, Charles
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.16-16
    • /
    • 2011
  • Statistics of extreme rainfall play a vital role in engineering practice from the perspective of mitigation and protection of infrastructure and human life from flooding. While flood frequency assessments, based on river flood flow data are preferred, the analysis of rainfall data is often more convenient due to the finer spatial nature of rainfall recording networks, often with longer records, and potentially more easily transferable from site to site. The rainfall frequency analysis as a design tool has developed over the years in New Zealand from Seelye's daily rainfall frequency maps in 1947 to Thompson's web based tool in 2010. This paper will present a history of the development of New Zealand rainfall frequency analysis methods, and the details of the latest method, so that comparisons may in future be made with the development of Korean methods. One of the main findings in the development of methods was new knowledge on the distribution of New Zealand rainfall extremes. The High Intensity Rainfall Design System (HIRDS.V3) method (Thompson, 2011) is based upon a regional rainfall frequency analysis with the following assumptions: $\bullet$ An "index flood" rainfall regional frequency method, using the median annual maximum rainfall as the indexing variable. $\bullet$ A regional dimensionless growth curve based on the Generalised Extreme Value (GEV), and using goodness of fit test for the GEV, Gumbel (EV1), and Generalised Logistic (GLO) distributions. $\bullet$ Mapping of median annual maximum rainfall and parameters of the regional growth curves, using thin-plate smoothing splines, a $2km\times2km$ grid, L moments statistics, 10 durations from 10 minutes to 72 hours, and a maximum Average Recurrence Interval of 100 years.

  • PDF

Derivation of Rainfall Intensity-Duration-Frequency Equation Based on the Approproate Probability Distribution (지속기간별 강우자료의 적정분포형 선정을 통한 확률강우강도식의 유도)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Han, Jeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 1999
  • The frequency analyses of annual maximum rainfall data for 22 rainfall gauging stations is Korea were performed. The method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) were used in parameter estimation. The GEV distribution was selected as an appropriate model for annual maximum rainfall data based on parameter validity condition, graphical analysis, separation effect, and goodness of fit tests. For the selected GEV model, spatial analysis was performed and rainfall intensity-duration-frequency equation was derived by using linearization technique. The derived rainfall intensity-duration-frequency equation can be used for estimating rainfall quantiles of the selected stations with convenience and reliability in practice.

  • PDF

Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province (춘천시에서 발생한 산사태 유발강우의 특성 분석)

  • Sang Ug, Kim;Kyong Oh, Baek
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

Comparison of Precipitation Characteristics using Rainfall Indicators Between North and South Korea (강수지표를 이용한 남·북한 강수특성 비교)

  • Lee, Bo-Ram;Chung, Eun-Sung;Kim, Tae-Woong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2223-2235
    • /
    • 2013
  • This study aimed to understand temporal and spatial trends of rainfall characteristics in South and North Korea. Daily rainfall observed at the 65 stations in South Korea between 1963 and 2010 and the 27 stations in North Korea between 1973 and 2010 were analyzed. Rainfall Indicators for amount, extremes, frequency of rainfall were defined. Province-based indicators in the recent 10 years (i.e., between 2001 and 2010) were compared to those in the past (i.e., between 1963/1973 and 2000 for South/North Korea). In the recent 10 years, all the indicators except for the number of wet days (NWD) and 200-yr frequency rainfall (Freq200) increased in South Korea and all the indicators except for the annual mean daily rainfall over wet days (SDII) and annual total rainfall amount (TotalDR) decreased in North Korea. Furthermore, we performed the Mann-Kendall trend test based on the annual indicators. In some stations, decreasing trends in the past and increasing trends in the recent 10 years were found, and such opposite trends between two periods suggest he limitation in predicting and analyzing the rainfall characteristics based on the average. Results from this study can be used in analyzing the impact of climate change and preparing adaptation strategies for the water resources management.

Comparative Study of Flow Profiles & Discharge due to Rainfall Frequency Analysis (강우빈도 해석을 통한 하천 수리$\cdot$수문량 비교 연구)

  • Seo Kyu Woo;Lee In Rock;Won Chang Hee;Shim Bong Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1533-1537
    • /
    • 2005
  • The recent rainfall has happened to exceed the design rainfall after 1990 often, due to the characteristic of the rain to be changed. So, it is failing the ability safety of flood defense equipments to exist. This study analyzed the rainfall of Busan in 2003 since 1961 through the FARD2002(Frequency Analysis of Rainfall Duration). The result is equal to the thing which the design rainfall increased a little since 1991. The change of design rainfall created the result to be a flood discharge increase. This study investigated about the impact to influence on the river bank according to the change of flood discharge, the rainfall pattern change as well. This study used the program of HEC-RAS with HEC-HMS and calculated flood discharge with flood level of river. The result is equal to the thing which the computation became a flood level which exceed 50year(River design criteria-Korea water resources association 2002) criteria with 30year(River establishment criteria-Ministry of construction & transportation 1993), because of an area of impermeability increased of model basin.

  • PDF

Sensitivity Analysis of ILLUDAS Model Parameters Based on Rainfall Conditions (강우조건이 ILLUDAS 모형 매개변수의 민감도에 미치는 영향 분석)

  • Lee, Jong Tae;Kim, Tae Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.748-757
    • /
    • 2004
  • In this study, we analyzed the sensitivity of parameters which affect the result of ILLUDAS model, in the various rainfall conditions. The three basins including Namgaja, Kings creek, Gray haven were selected for this research. The rainfall conditions are considered in terms of the rainfall frequency, the duration and the distribution. In most cases, the impermeability area ratio, the sewer slope, and the sewer roughness coefficient give more significant effects on the results than others. The results show that as increasing the rainfall frequency, the sensitivity of the parameters, sewer slope and roughness coefficient are rised, while the impermeability area ratio is decreasing. And also, for the duration of rainfall, the impermeability area ratio's sensitivity shows similar tendency. In case of the rainfall distribution, the parameters of the sewer roughness and the impermeability area ratio show more sensitive in Huff distribution. Especially, The impermeability area ratio is the most sensitive parameter in Central blocking and Yen & Chow distributions respectively.

Regional Frequency Analysis of Drought Rainfall using L-Moments (L-모멘트법에 의한 가뭄우량의 지역빈도분석)

  • Lee, Soon-Hyuk;Yoon, Seong-Soo;Maeng, Sung-Jin;Ryoo, Kyong-Sik;Joo, Ho-Kil
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.451-454
    • /
    • 2003
  • This study was mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. Selecting the drought rainfall series by the consecutive durations of drought observed for the long period all over the regions in Korea, optimal regionalization of the drought rainfall was classified by the climatologically and geographically homogeneous regions. Using the L-moment ratio and Kolmogorov- Smimov test, resonable frequency distribution for the drought rainfall was selected by the regions and consecutive periods of drought. Design drought rainfalls by the regions and consecutive durations were derived and compared by at-site and regional drought frequency analysis using the method of L-moments.

  • PDF

Rainfall Variations of Temporal Characteristics of Korea Using Rainfall Indicators (강수지표를 이용한 우리나라 강수량의 시간적인 특성 변화)

  • Hong, Seong-Hyun;Kim, Young-Gyu;Lee, Won-Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study suggests the results of temporal and spatial variations for rainfall data in the Korean Peninsula. We got the index of the rainfall amount, frequency and extreme indices from 65 weather stations. The results could be easily understood by drawing the graph, and the Mann-Kendall trend analysis was also used to determine the tendency (up & downward/no trend) of rainfall and temperature where the trend could not be clear. Moreover, by using the FARD, frequency probability rainfalls could be calculated for 100 and 200 years and then compared each other value through the moment method, maximum likelihood method and probability weighted moments. The Average Rainfall Index (ARI) which is meant comprehensive rainfalls risk for the flood could be obtained from calculating an arithmetic mean of the RI for Amount (RIA), RI for Extreme (RIE), and RI for Frequency (RIF) and as well as the characteristics of rainfalls have been mainly classified into Amount, Extremes, and Frequency. As a result, these each Average Rainfall Indices could be increased respectively into 22.3%, 26.2%, and 5.1% for a recent decade. Since this study showed the recent climate change trend in detail, it will be useful data for the research of climate change adaptation.

Assessment of the ENSO Impact on Frequency and Spatial Distribution of Rainfall in South Korea (ENSO가 우리나라 강우의 확률빈도와 공간분포에 미치는 영향)

  • Kim, Soo Jun;Kim, Byung Sik;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.143-153
    • /
    • 2008
  • The purpose of this paper is to evaluate impacts of ENSO on frequency and spatial distribution of rainfall in South Korea. In this paper, First, rainfall data in 60 climate stations were categorized into Warm(El Nino), Cold(La Nina), Normal episodes based on the Cold & Warm Episodes by Season, then 100 years of daily rainfall data were generated for each episodic events(El Nino, La Nina, Normal) using Markov Chain model. Finally, Estimating frequency based flood and comparison for each episodes were conducted. From the results, it shows that there are significant changes in the rainfall frequency and the spatial distribution of rainfall among Warm(EL Nino), Cold(La Nina) and Normal episodes.

  • PDF