• Title/Summary/Keyword: Radio-Frequency plasma

Search Result 227, Processing Time 0.027 seconds

A Measurements of Radio-Frequency Induction Discharge Plasma using probe method (고주파 유도방전 플라즈마의 푸로우브법에 의한 계측)

  • Park, Sung-Gun;Park, Sang-Yun;Ha, Chang-Ho;Park, Won-Zoo;Lee, Kwang-Sik;Lee, Dong-In
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1657-1659
    • /
    • 1997
  • Electron temperature and electron density were measured in a radio-frequency inductively coupled plasma (RFICP) using a probe measurements. Measurement was conducted in an argon discharge for pressures from 10 [mTorr] to 40 [mTorr] and input rf power from 100 [W] to 800 [W], Ar flow rate from 5 [sccm] to 30 [sccm], Spatial distribution electron temperature and electron density were measured for discharge with same aspect ratio (R/L=2). Electron temperature and electron density were discovered depending on both pressure and power, Ar flow rate. Electron density was increased with increasing input power and in creasing pressure, increasing Ar flow rate. Radial distribution of the electron density was peaked in the plasma center. Normal distribution of the electron density was peaked in the center between quartz plate and substrate. From these results, We found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

Step Response of RF Plasma in Carbon Tetrafluoride($CF_4$)

  • So, Soon-Youl;Akinori Oda;Hirotake Sugawara;Yosuke Sakai
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.930-933
    • /
    • 2000
  • To understand the behavior of electron, ions and radicals on radio-frequency non-equilibrium plasma, it is necessary to know the basic information about its fundamental properties and reactions. Especially, the transient response of radio-frequency plasma has an important means of controlling selective etch rates and investigating the stability of a plasma chemical process. In this paper, we present the results of periodic steady-state behavior and transient behavior carbon Tetrafluoride(CF$_4$) discharge at 0.2 Torr in a 2 cm gap parallel-plate. After the number densities of charged particles became steady-state, the applied voltage was increased or decreased in an instant and the transient behavior of charged particles and radicals was investigated from one steady-state to the next steady state.

  • PDF

The study on the methane activation by a plasma (플라즈마 반응에 의한 메탄 활성화에 관한 연구)

  • Cho Won Ihl;Baek Young Soon;Kim Byung Il;Kim Young Chai
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.60-69
    • /
    • 1998
  • Methane, the major constituent of natural gas, had been converted to higher hydrocarbons by microwave and radio-frequency plasma in vacuum condition. Methane had been activated to plasma by suppling high energy then converted to ethane, ethylene, acetylene. The direct conversion process of methane had produced few by-products and demanded low-energy. The plasma sources were microwave and radio-frequency. Two types of reactor had been used to activate methane. One is common single tubular-type reactor and the other is series coil-type reactor which used for the first time in this study. To produce more C2 products, methane had been converted by a plasma and catalyst. The results of this study could be used to study mechanism of plasma reaction of methane, design the plant-scale reactor.

  • PDF

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Potential Interference of Electric Equipments on Radio Service below 30MHz (30MHz 이하 무선 서비스에 대한 전자기기의 잠재적 간섭 영향)

  • Yun, Hye-Ju;Lee, Il-Kyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.269-273
    • /
    • 2013
  • This paper analyzed a potential interference of electric equipments on radio service below 30MHz through an experiment with a PDP(Plasma Display Panel) TV and a RF(Radio Frequency) light bulb in an anechoic chamber. The radiation levels of the PDP TV and the RF light bulb are measured and a combined interference is calculated on the basis of the experimental value. As a result, the combined interference signal level is increased according to the number of interferer. The possibility of a potential interference from electric equipments on radio service below 30MHz is realized through comparison between the measured radiation value of electric equipments and the CISPR(International Special Committee on Radio Interference) 11 limit.

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

A Measurements on the Characteristics of Electron Energy Distribution Function of Radio-Frequency Inductively Couples Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 계측에 관한 연구)

  • 하장호;전용우;최상태;박원주;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.82-86
    • /
    • 1999
  • Electron Energy Distribution Function(EEDF) were treasured In Radio-Frequency Inductively Coupled Plasma(RFlCP) using a probe rrethocl Measurerrents were conducted in argon discharge for pressure from 10[mTorr] to 4O[mTorr] and input rf power from 100[W] to 600[W] and flow rate from 3[sccm] to 12[sccm]. Spatial distribution of electron energy distribution function were measured for discharge with same aspoct ratio (R/L=2). Electron energy distribution function strongly depended on both pressure and power. Electron energy distribution function increased with increasing flow rate. Radial distribution of the electron energy distribution function were peaked in the plasma center. Normal distribution of the electron energy distribution function were peaked in the center between quartz plate and substrate. From the results, we can find out the generation mechanism of Radio Frequency Inductively Coupled Plasma. And these results contribute the application of a simple Inductively Coupled Plasma(ICP).a(ICP).

  • PDF

A Study on the Characteristics of the Radio-Frequency Inductive Discharge Plasma (고주파 유도방전 플라즈마 특성에 관한 연구( I ))

  • 박성근;박상윤;박원주;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.63-66
    • /
    • 1996
  • Electron temperature and electron density were measured in a radio-frequency(rf) inductively coupled plasma using probe measurements. Measurements were made in an argon discharge for pressures from 10 to 100mTorr and input rf power from 100 to 800W. Spatial distribution Electron temperature and electron density were measured for discharge with same aspect ratio. Electron temperature and Electron density were found to depend on both pressure and power. Electron density was creased with increasing pressure, but peaked in a 70mTorr discharge. Radial distribution of the electron density was peaked in the plasma fringes. These results were compared to a simple model of inductively coupled plasmas.

  • PDF

The Formation of Reserved Field Configuration with Bias Field and Radio-Frequency Rotating Field (바이어스 자계와 고주파 회전자계에 의한 역전자계 배위 형성)

  • 채규훈;김동필
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.10
    • /
    • pp.840-847
    • /
    • 1989
  • It is an important problem that the plasma of high B value is to be confined safely in the research of plasma fusion. So, the Reversed Field Pinch (RFP) plasma has been studied. RFP is stable pinch having self-reversal phenomenon that forms reversed field of itself, but its process of formation is unstable. Therefore, in this paper, we configured the stable RFP by supplying the radio-frequency rotating field just before the RFP is configured by self-reversal phenomenon. Moreover, when conductivity wall is used, toroidal configured by self-reversal phenomenon. Moreover, when conductivity wall is used, toroidal flux is subject to heavy fluctuation in case of high bias field compared with low bias field.