• 제목/요약/키워드: Radiation protection materials

Search Result 442, Processing Time 0.04 seconds

Nuclear Terrorism and Global Initiative to Combat Nuclear Terrorism(GICNT): Threats, Responses and Implications for Korea (핵테러리즘과 세계핵테러방지구상(GICNT): 위협, 대응 및 한국에 대한 함의)

  • Yoon, Tae-Young
    • Korean Security Journal
    • /
    • no.26
    • /
    • pp.29-58
    • /
    • 2011
  • Since 11 September 2001, warnings of risk in the nexus of terrorism and nuclear weapons and materials which poses one of the gravest threats to the international community have continued. The purpose of this study is to analyze the aim, principles, characteristics, activities, impediments to progress and developmental recommendation of the Global Initiative to Combat Nuclear Terrorism(GICNT). In addition, it suggests implications of the GICNT for the ROK policy. International community will need a comprehensive strategy with four key elements to accomplish the GICNT: (1) securing and reducing nuclear stockpiles around the world, (2) countering terrorist nuclear plots, (3) preventing and deterring state transfers of nuclear weapons or materials to terrorists, (4) interdicting nuclear smuggling. Moreover, other steps should be taken to build the needed sense of urgency, including: (1) analysis and assessment through joint threat briefing for real nuclear threat possibility, (2) nuclear terrorism exercises, (3) fast-paced nuclear security reviews, (4) realistic testing of nuclear security performance to defeat insider or outsider threats, (5) preparing shared database of threats and incidents. As for the ROK, main concerns are transfer of North Korea's nuclear weapons, materials and technology to international terror groups and attacks on nuclear facilities and uses of nuclear devices. As the 5th nuclear country, the ROK has strengthened systems of physical protection and nuclear counterterrorism based on the international conventions. In order to comprehensive and effective prevention of nuclear terrorism, the ROK has to strengthen nuclear detection instruments and mobile radiation monitoring system in airports, ports, road networks, and national critical infrastructures. Furthermore, it has to draw up effective crisis management manual and prepare nuclear counterterrorism exercises and operational postures. The fundamental key to the prevention, detection and response to nuclear terrorism which leads to catastrophic impacts is to establish not only domestic law, institution and systems, but also strengthen international cooperation.

  • PDF

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

The Study on the Anti-aging Effects of Mallotus japonicus Bark Extracts (예덕나무 피 추출물의 노화 방지 효과에 관한 연구)

  • Lee Kang Tai;Lee Jeong No;Ahn Gi Woong;Jeong Ji Hean;Jo Byoung Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.445-448
    • /
    • 2004
  • Aging is divided into intrinsic aging and photo-aging. Intrinsic aging is naturally occurred as the time passed and photo-aging is induced by the UV radiation of skin. The main reason of aging is the free radicals and the degeneration of the cellular materials by free radicals. In this paper, we checked the anti-aging effects of Mallotus japonicus bark extracts. It has the ability to scavenge free radicals and the SOD like activity. Also, it reduced the cell damage by hydrogen peroxide treatment. Mallotus japonicus bark extracts showed the excellent activity on inhibiting the UV induced cell damage and DNA damage. In conclusion, Mallotus japonicus bark extracts can be used as active ingredients for anti-aging cosmetics.

Repeat analysis of intraoral digital imaging performed by undergraduate students using a complementary metal oxide semiconductor sensor: An institutional case study

  • Yusof, Mohd Yusmiaidil Putera Mohd;Rahman, Nur Liyana Abdul;Asri, Amiza Aqiela Ahmad;Othman, Noor Ilyani;Mokhtar, Ilham Wan
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.233-239
    • /
    • 2017
  • Purpose: This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor(CMOS) intraoral sensor. Materials and Methods: A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. Results: The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and inter-observer agreement was achieved. Conclusion: The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients

In vitro Screening of Jeju Medicinal Plants for Cosmeceutical Materials

  • Kim, Sang-Suk;Hyun, Chang-Gu;Lee, Jong-Sung;Lim, Ji-Hee;Kim, Ji-Young;Park, Deok-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.215-220
    • /
    • 2007
  • One of the important functions of skin is protection from harmful environments. Many studies have explored how to prevent skin from wrinkling and the occurrence of pigmentation changes. Skin wrinkling and pigmentation changes could be caused by unusual disruption of connective tissue, the formation of free radicals and ultraviolet radiation. In this study, extracts obtained from 254 different kinds of Jeju medicinal plants were screened for inhibitory effects on tyrosinase and elastase, and for free radical scavenging effects. Four herbs, Phormium tenax, Morus bombycis, Morus alba, and Cudrania tricuspidata, were potent inhibitors of tyrosinase ($IC_{50}$ values 4.62, 5.46, 8.17, and 64.17 ${\mu}g$/mL, respectively). Aleurites fordii [$IC_{50}$: 5.29 ${\mu}g$/mL, 1,1-diphenyl-2-picrylhydrazyl (DPPH)], Distylium racemosum ($IC_{50}$: 6.14 ${\mu}g$/mL), Acer palmatum ($IC_{50}$: 5.44 ${\mu}g$/mL), and Spiraea salicifolia ($IC_{50}$: 5.25 ${\mu}g$/mL) showed good antioxidative effects. Furthermore, Distylium racemosum ($IC_{50}$: 7.51 ${\mu}g$/mL), Diospyros kaki ($IC_{50}$: 15.1 ${\mu}g$/mL), Cornus macrophylla ($IC_{50}:$ 16.59 ${\mu}g$/mL), and Psidium guajava ($IC_{50}$: 40.25 ${\mu}g$/mL) exhibited potent inhibitory effects on elastase. These results suggest that medicinal plants possessing several biological activities may be potent inhibitors of the processes involved in pigmentation increases and aging. Further investigations will focus on in vivo assays and on the chemical identification of the major active components responsible for whitening and anti-aging activity in the screened efficacious extracts.

Can ultra-low-dose computed tomography reliably diagnose and classify maxillofacial fractures in the clinical routine?

  • Gerlig Widmann;Marcel Dangl;Elisa Lutz;Bernhard Fleckenstein;Vincent Offermanns;Eva-Maria Gassner;Wolfgang Puelacher;Lukas Salbrechter
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: Maxillofacial trauma predominantly affects young adults between 20 and 40 years of age. Although radioprotection is a legal requirement, the significant potential of dose reduction in computed tomography (CT) is still underused in the clinical routine. The objective of this study was to evaluate whether maxillofacial fractures can be reliably detected and classified using ultra-low-dose CT. Materials and Methods: CT images of 123 clinical cases with maxillofacial fractures were classified by two readers using the AOCOIAC software and compared with the corresponding results from post-treatment images. In group 1, consisting of 97 patients with isolated facial trauma, pre-treatment CT images at different dose levels (volumetric computed tomography dose index: ultra-low dose, 2.6 mGy; low dose, <10 mGy; and regular dose, <20 mGy) were compared with post-treatment cone-beam computed tomography (CBCT). In group 2, consisting of 31 patients with complex midface fractures, pre-treatment shock room CT images were compared with post-treatment CT at different dose levels or CBCT. All images were presented in random order and classified by 2 readers blinded to the clinical results. All cases with an unequal classification were re-evaluated. Results: In both groups, ultra-low-dose CT had no clinically relevant effect on fracture classification. Fourteen cases in group 2 showed minor differences in the classification code, which were no longer obvious after comparing the images directly to each other. Conclusion: Ultra-low-dose CT images allowed the correct diagnosis and classification of maxillofacial fractures. These results might lead to a substantial reconsideration of current reference dose levels.

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

Evaluation of Usefulness on In-vivo Diode Dosimetry for Measuring the Tumor Dose of Oral Cancer Patient (구강암 환자의 종양 선량 측정을 위한 In-vivo Diode Dosimetry의 유용성 평가)

  • Na Kyung-Su;Lee Je-Hee;Park Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • Purpose : This test is designed to identify the validity of treatment plan by implementing real-time dosimetry by means of dose that is absorbed into PTV and OAR when preparing doses of 3D and POP plans. Materials and Methods : In treatment. error can be calculated be comparing Exp. Dose with the actual dose, which has been converted from 'the reading value obtained by placing diode detector on the area to be measured'. Same test can be repeated using Alderson-Rando phantom. Results : Errors were found: A patient(POP plan): 197.6/199=-1.2%, B patient(3D-plan): 199.9/198.7=+0.6%, C patient: 196/200=-1.5%. In addition, considering the resulted value of measuring OAR besides target-dose for C patient showed 96/200, representing does of 47%, the purpose of protection was judged to be duly accomplished. Also it was acknowledged the resulted value of -3.7% met the targeted dose within the range of ${\pm}5%$. Conclusion : Aimed for identifying the usefulness of pre-treatment dose measurement using diode detector, this test was useful to evaluate the validity of curing because it resulted in the identification of category to be protected as well as t dose. Moreover, it is thought to have great advantage in ascertaining the dose of target, dose of which is not calculated yet. Similar to L-gram before treatment, this test is thought to be very effective so that it can bring great advantages in the aspects such as validity of curing method and post-treatment plan as well.

  • PDF

Development of Three-Dimensional Trajectory Model for Detecting Source Region of the Radioactive Materials Released into the Atmosphere (대기 누출 방사성물질 선원 위치 추적을 위한 3차원 궤적모델 개발)

  • Suh, Kyung-Suk;Park, Kihyun;Min, Byung-Il;Kim, Sora;Yang, Byung-Mo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Background: It is necessary to consider the overall countermeasure for analysis of nuclear activities according to the increase of the nuclear facilities like nuclear power and reprocessing plants in the neighboring countries including China, Taiwan, North Korea, Japan and South Korea. South Korea and comprehensive nuclear-test-ban treaty organization (CTBTO) are now operating the monitoring instruments to detect radionuclides released into the air. It is important to estimate the origin of radionuclides measured using the detection technology as well as the monitoring analysis in aspects of investigation and security of the nuclear activities in neighboring countries. Materials and methods: A three-dimensional forward/backward trajectory model has been developed to estimate the origin of radionuclides for a covert nuclear activity. The developed trajectory model was composed of forward and backward modules to track the particle positions using finite difference method. Results and discussion: A three-dimensional trajectory model was validated using the measured data at Chernobyl accident. The calculated results showed a good agreement by using the high concentration measurements and the locations where was near a release point. The three-dimensional trajectory model had some uncertainty according to the release time, release height and time interval of the trajectory at each release points. An atmospheric dispersion model called long-range accident dose assessment system (LADAS), based on the fields of regards (FOR) technique, was applied to reduce the uncertainties of the trajectory model and to improve the detective technology for estimating the radioisotopes emission area. Conclusion: The detective technology developed in this study can evaluate in release area and origin for covert nuclear activities based on measured radioisotopes at monitoring stations, and it might play critical tool to improve the ability of the nuclear safety field.