Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery

방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검

  • Chung, Hyun-Tai (Department of Neurosurgery, Seoul National University Hospital) ;
  • Lee, Re-Na (Department of Radiation Oncology, Ewha Womans University School of Medicine)
  • 정현태 (서울대학교병원 신경외과) ;
  • 이레나 (이화여자대학교 의학전문대학원 방사선종양학과)
  • Published : 2008.06.30

Abstract

Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

목 적: 방사선수술에 사용되는 치료계획을 위한 정위 영상 획득 때 사용되는 표시기(indicator)의 회전에 의한 오차를 분석하고 이를 교정하는 소프트웨어의 기능을 점검하는 방법을 제시한다. 이 방법을 이용하여 상용 프로그램인 렉셀감마플랜의 회전 오차 기능을 점검한다. 대상 및 방법: 상용 프로그래밍 언어인 Interactive Data Language (version 5.5)를 이용하여 소프트웨어적으로 만든 정위 영상으로 가상 팬텀을 만들었다. 영상의 두께는 0.5 mm, 픽셀 크기 0.5 mm, 필드 크기 256 mm, 그리고 분해능은 $512{\times}512$이었다. 영상은 DICOM 3.0 표준을 따라서 렉셀감마플랜이 인식할 수 있도록 하였다. 회전 교정 기능 점검을 위하여 가상 팬텀의 중심에서 상하로 50 mm와 30 mm 떨어진 곳과 중앙에 위치한 횡단면 영상에 각각 50 mm 간격으로 측정점 9개를 만들어 총 45개의 측정점을 만들었다. 기준 가상 팬텀을 x, y, z축을 중심으로 각각 $3^{\circ}$ 회전한 영상, xy, yz, zx 축을 중심으로 각각 $3^{\circ}$씩 회전한 영상, xyz세 방향으로 모두 $3^{\circ}$씩 회전한 영상을 만들어서 회전에 의한 오차를 계산하고, 렉셀감마플랜의 교정 기능을 점검하였다. 결과: 가상 영상을 렉셀감마플랜에 입력하고 정위좌표를 정의할 때 영상에 의한 등록 오차는 $0.1{\pm}0.1mm$로써 방사선수술에서 요구하는 오차 내에 있었다. x, y, z축 중 1개 축을 중심으로 $3^{\circ}$ 회전할 때 가능한 최대 오차는 2.6mm, 2개 축을 중심으로 $3^{\circ}$씩 회전할 때는 3.7mm, 3개축 모두에 대해 $3^{\circ}$씩 회전할 때는 4.5 mm이다. 이에 대해 영상의 회전을 교정하여 렉셀감마플랜에서 측정한 측정점들의 변위는 1 개축을 중심으로 회전하였을 때 $0.1{\pm}0.1mm$, 2 개 축의 경우 $0.2{\pm}0.2mm$, 3개축의 경우 $0.2{\pm}0.2mm$로서 회전의 영향을 보정하는 기능이 정확하게 작동하고 있음을 확인할 수 있었다. 결론: 방사선수술 치료계획 프로그램의 여러 소프트웨어적 기능을 점검하기 위한 가상 팬텀을 만들고 상용프로그램의 회전 오차 교정 기능을 점검한 결과 정확하게 작동하고 있음을 확인하였다. 본 연구에서 작성한 가상 팬텀은 치료계획 프로그램의 다른 여러 기능들을 점검하는 데도 사용될 수 있을 것이다.

Keywords

References

  1. Chung HT, Kim DG. Images for stereotactic neurosurgery. J Korean Soc. Stereotact and Funct. Neurosurg. 2005;1:1-9
  2. Schicho K, Figl M, Seemann R, Pretterklieber ML, Birkfellner W, Reichwein A, Wanschitz F, Kainberger F, Bergmann H, Wagner A, Ewers R. Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. Technical note. J Neurosurg. 2007; 106:704-709 https://doi.org/10.3171/jns.2007.106.4.704
  3. Spetzqer V, Laborde G, Gilsbach JM. Frameless neuronavigation in modern neurosurgery. Minim Invasive Neurosurg. 1995; 38:163-166 https://doi.org/10.1055/s-2008-1053478
  4. Baldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG. Characterization, prediction, and correction of geometric distortion of 3T MR images. Med. Phys. 2007;34:388-399 https://doi.org/10.1118/1.2402331
  5. Guo WY: Application of MR in stereotactic radiosurgery. JMRI. 1998;8:415-420 https://doi.org/10.1002/jmri.1880080222
  6. Moerland MA, Beersma R, Bhagwandien R, Wijrdeman HK, Bakker CJG. Analysis and correction of geometric distortions in 1.5T magnetic resonance images for use in radiotherapy treatment planning. Phys. Med. Biol. 1995;40: 1651-1665 https://doi.org/10.1088/0031-9155/40/10/007
  7. Park SW, Han MH, Kim DG, Chung HT, Song IC, Kim HD, Chang KH. Assessment of imaging distortion in magnetic resonance imaging for stereotactic radiosurgery: Through phantom study. J Korean Soc. Magn. Reson. Med. 2000;4:7-13
  8. Peters TM, Clark JA, Olivier A, Marchand EP, Mawko G, Dieumeqarde M, Dieumegarde M, Muresan LV, Ethier R. Integrated stereotaxic imaging with CT, MR imaging, and digital subtraction angiography. Radiology 1986;1:821-826
  9. National Electrical Manufacturers Association: Digital imaging and communications in medicine (DICOM). PS3.1, Rosslyn: NEMA Standards Publication, 1993
  10. Maciunas, RJ, Galloway RL Jr, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery 1994;35:682- 695 https://doi.org/10.1227/00006123-199410000-00015