• Title/Summary/Keyword: Radar Targets

Search Result 302, Processing Time 0.036 seconds

A Study on the Analysis of the Effective Reflecting Area of the Land Targets for the Improvement of the Radar Simulator Map (Radar Simulator의 Coastline-Generator용 Map 작성을 위한 육지유효반사면적에 관한 고찰)

  • 박용섭;박범식
    • Journal of the Korean Institute of Navigation
    • /
    • v.2 no.1
    • /
    • pp.15-34
    • /
    • 1978
  • This paper deals with the study of the effective reflecting area of the land targets for the improvement of the map of the Radar Simulator, through the analysis of the pictures on P.P.I Scope. It is very important to anticipate the effective refiecting area of land marks, either forinterpretation of radar scope or for simulating accurately the radar scope, but has seldom been studied theoretically or experimentarily, especially on the stand point of simulating the radar scope. Most of the maps of Radar Simulator in use are made without consideration of the effective reflecting area of land marks, so that the P.P.I. Scope of the Radar Simulator may show much different pictures from the actual shore line and other targets. This paper has derived the following conclusiions by experimental procedures. 1. The effective area of the land target greatly varies according to the gradient of the contours, roughness and material of the land surfaces, so that simulator maps of uniformly coated land taret practically used now many be effectively improved by varying the intensity of the land marks proposed in this paper. 2. The intensity of the land targets on the P.P.I. is also related much to the distance from the radar, so that the precalculation of this effect may results in a much simulated P.P.I. picture improved. 3. If the ambient condition is constant, the intensity of the picture increases as the height of the targets is increased.

  • PDF

A Technology of Information Data Fusion between Radar and ELINT System

  • Lim, Joong-Soo
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.22-25
    • /
    • 2007
  • This paper presents a technology of information data fusion between radar and ELINT electronic intelligence system. adar get the information of the range, direction and velocity of targets, and ELINT system get the information of the direction and angular velocity of the same targets at the same place and at the same time. Since we have some common information data of targets from radar and ELINT system, we can find the target on radar is same or not on ELINT system using the information data fusions. If the target on the radar is verified with the same target on ELINT system, we get more information of the target. e can analysis and identify the target exactly and reduce an ambiguity error of unknown targets.

An Artificial Intelligence Research for Maritime Targets Identification based on ISAR Images (ISAR 영상 기반 해상표적 식별을 위한 인공지능 연구)

  • Kim, Kitae;Lim, Yojoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Artificial intelligence is driving the Fourth Industrial Revolution and is in the spotlight as a general-purpose technology. As the data collection from the battlefield increases rapidly, the need to us artificial intelligence is increasing in the military, but it is still in its early stages. In order to identify maritime targets, Republic of Korea navy acquires images by ISAR(Inverse Synthetic Aperture Radar) of maritime patrol aircraft, and humans make out them. The radar image is displayed by synthesizing signals reflected from the target after radiating radar waves. In addition, day/night and all-weather observations are possible. In this study, an artificial intelligence is used to identify maritime targets based on radar images. Data of radar images of 24 maritime targets in Republic of Korea and North Korea acquired by ISAR were pre-processed, and an artificial intelligence algorithm(ResNet-50) was applied. The accuracy of maritime targets identification showed about 99%. Out of the 81 warship types, 75 types took less than 5 seconds, and 6 types took 15 to 163 seconds.

Development of Radar HILS System and Verification Radar Performance Scenario-based (레이다 비행 모의 장치 개발 및 시험 시나리오 기반 레이다 성능 검증)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.574-579
    • /
    • 2023
  • The radar flight test has many restrictions on simulating various targets, clutter and jamming signal. Therefore, in this study, a radar HILS system that performs a radar operation simulation function according to an operation scenario was developed. Radar HILS simulates the radar mission environment through radar beam operation simulation, radar operation control, simulated signal generation, and flight attitude simulation.. HILS generates and modulates simulated target signals(single, multiple targets) containing radar mission environments(clutter, jamming etc.) based on flight scenarios, and transmits them to AESA radar over RF. And Scenario-based radar performance was verified by detecting simulated targets and confirming detection results.

Real-time position tracking of traffic ships by ARPA radar and AIS in Busan Harbor, Korea (부산항에서 ARPA 레이더와 AIS에 의한 통한선박의 실시간 위치추적)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2008
  • This paper describes on the consolidation of AIS and ARPA radar positions by comparing the AIS and ARPA radar information for the tracked ship targets using a PC-based ECDIS in Busan harbor, Korea. The information of AIS and ARPA radar target was acquired independently, and the tracking parameters such as ship's position, COG, SOG, gyro heading, rate of turn, CPA, TCPA, ship s name and MMSI etc. were displayed automatically on the chart of a PC-based ECDIS with radar overlay and ARPA tracking. The ARPA tracking information obtained from the observed radar images of the target ship was compared with the AIS information received from the same vessel to investigate the difference in the position and movement behavior between AIS and ARPA tracked target ships. For the ARPA radar and AIS targets to be consolidated, the differences in range, speed, course, bearing and distance between their targets were estimated to obtain a clear standards for the consolidation of ARPA radar and AIS targets. The average differences between their ranges, their speeds and their courses were 2.06% of the average range, -0.11 knots with the averaged SOG of 11.62 knots, and $0.02^{\circ}$ with the averaged COG of $37.2^{\circ}$, respectively. The average differences between their bearings and between their positions were $-1.29^{\circ}$ and 68.8m, respectively. From these results, we concluded that if the ROT, COG, SOG, and HDG informations are correct, the AIS system can be improved the prediction of a target ship's path and the OOW(Officer of Watch) s ability to anticipate a traffic situation more accurately.

A Study on Effective Identification of Targets Flying in Formation ISAR Images (ISAR 영상을 이용한 효과적인 편대비행 표적식별 연구)

  • Cha, Sang-Bin;Choi, In-Oh;Jung, Joo-Ho;Park, Sang-Hong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.

Signal Processing of the Continuous-Wave Radar for Approach and Retreat of Targets Using I and Q Channels (I/Q 채널을 이용한 연속파 레이다의 표적 접근/후퇴 신호처리)

  • Cho, Choon Sik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.34-37
    • /
    • 2017
  • This letter presents the signal processing of a CW radar (Continuous Wave or Doppler radar) sensor which enables the radar to detect the multiple targets' approaching and retreating using both I and Q channels. The proposed algorithm utilizes the phase change of the Quadrature signal, which occurs when targets move back and forth from the radar. The verification is carried out with the board containing a commercially available MMIC chip and an MCU by analyzing the received data from MMIC. Also the proposed algorithm is downloaded to MCU and the approaching and retreating movement is confirmed. The CW frequency is 24.125 GHz and the transmitter output power used is 7.2 dBm. Detectable distance is about 12 m.

Low Complexity FMCW Surveillance Radar Algorithm Using Phase Difference of Dual Chirps (듀얼첩간 위상차이를 이용한 저복잡도 FMCW 감시 레이더 알고리즘)

  • Jin, YoungSeok;Hyun, Eugin;Kim, Sangdong;Kim, Bong-seok;Lee, Jonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.71-77
    • /
    • 2017
  • This paper proposes a low complexity frequency modulated continuous wave (FMCW) surveillance radar algorithm. In the conventional surveillance radar systems, the two dimensional (2D) fast Fourier transform (FFT) method is usually employed in order to detect the distance and velocity of the targets. However, in a surveillance radar systems, it is more important to immediately detect the presence or absence of the targets, rather than accurately detecting the distance or speed information of the target. In the proposed algorithm, in order to immediately detect the presence or absence of targets, 1D FFT is performed on the first and M-th bit signals among a total of M beat signals and then a phase change between two FFT outputs is observed. The range of target is estimated only when the phase change occurs. By doing so, the proposed algorithm achieves a significantly lower complexity compared to the conventional surveillance scheme using 2D FFT. In addition, show in order to verify the performance of the proposed algorithm, the simulation and the experiment results are performed using 24GHz FMCW radar module.

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

The Study of Improve Safety for Signaling System using Communication (통신에 의한 신호시스템의 안전성 확보에 대한 연구)

  • 백종현;한성호;안태기;온정근
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.307-314
    • /
    • 1999
  • The potential use of ranging sensors for reducing the occurrence of accidents in real environment is explored by many companies and laboratories. Most of the sensors under investigation utilize the FMCW(Frequency Modulated Continuous Wave) waveforms. The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF