• Title/Summary/Keyword: RTM(Resin Transfer Molding.)

검색결과 68건 처리시간 0.025초

Effects of Fiber Surface Modification on the Flow Characteristics and Wettability in the Resin Transfer Molding Process (섬유의 표면개질이 수지이동 성형공정에서의 유동특성 및 젖음성에 미치는 영향)

  • 김세현;이건웅;이종훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • 제11권1호
    • /
    • pp.34-43
    • /
    • 1999
  • Flow-induced voids during resin impregnation and poor fiber wetting have known to be highly detrimental to the performance of composite parts manufactured by resin transfer molding(RTM) process. In this study, in order to overcome these serious problems encountered in RTM, the effects of surface modification by using silane coupling agent as a surface modifier on the flow characteristics, the wetting between resin and fiber, and void content were investigated. For the experiments of microscopic flow visualization and curing in a beam mold, glass fiber mats having plain weaving structure and epoxy resin were used. Modifying the fiber surface was found to result in a significant decrease of dynamic contact angle between resin and fiber and increase of wicking rate. Therefore, it was confirmed that the surface modification employed in this study could improve the wettability of reinforcing fibers as well as micro flow behavior. In addition, It was revealed that high temperature and low penetration rate of the resin are more favorable processing conditions to reduce the dynamic contact angle. However, surface modified fiber mat was found to have lower permeability than the unmodified one, which may be explained in terms of the decrease of contact time between resin and fiber owing to improvement of wetting. It was also exhibited that surface modification had a significant influence on void formation in RTM process, resulting in a decrease of overall void content due to the improvement of wetting in cured composite parts.

  • PDF

Properties of CFRP by VaRTM process and its application to automobile engine hood (VaRTM 공법을 이용한 자동차용 엔진후드 개발)

  • Kim, Y.H.;Choi, B.K.;Jo, Y.D.;Son, J.H.;Eum, S.H.;Woo, B.H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.146-149
    • /
    • 2005
  • The using of composite material is an aviation field but it changes into a general industry. Especially composites are expanding the use on transportation vehicles like automobiles, ships, and aircrafts. The main factor of this expansion is high specific strength. It can supply a high quality and efficiency of energy. But manufacturing of composite products requires many raw materials and tooling cost for special process, so we needs a reduction of these costs to achieve best efficiency. In the present study, we contrast the change of mechanical and physical properties between VaRTM(Vacuum Assisted Resin Transfer Molding) and hand lay-up process. VaRTM process can offer a high quality the same as autoclave products, and low cost like hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.

  • PDF

Properties of CFRP by VaRTM Process and Its Application to Automobile Engine Hood (VaRTM 공법에 의해 제조된 CFRP의 특성평가 및 자동차 엔진 후드에 응용)

  • Kim, Y.H.;Choi, B.G.;Son, J.H.;Cho, Y.D.;Eum, S.H.;Woo, B.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.377-381
    • /
    • 2005
  • The using of composite material is an aviation field but it changes into a general industry. Especially composites are expanding the use on transportation vehicles like automobiles, ships, and aircraft. The main factor of this expansion is high specific strength. It can supply a high quality and efficiency of energy. But manufacturing of composite products requires many raw materials and tooling cost for special process, so we needs a reduction of these costs to achieve best efficiency. In the present study, we contrast the change of mechanical and physical properties between VaRTM(Vacuum Assisted Resin Transfer Molding) and hand lay-up process. VaRTM process can offer a high quality the same as autoclave products, and low cost like hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.

  • PDF

A Study on Cure Monitoring of Fast Cure Resin RTM Process Using Dielectrometry (유전기법을 이용한 속경화 수지 RTM 공정의 경화 모니터링에 대한 연구)

  • Park, Seul-Ki;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • 제30권3호
    • /
    • pp.202-208
    • /
    • 2017
  • Resin transfer molding (RTM) is a mass production process that allows the fabrication of composites ranging in size from small to large. Recently, fast curing resins with a curing time of less than about 10 minutes have been used in the automotive and aerospace industries. The viscosity of resin is bound up with the degree of cure, and it can be changed rapidly in the fast-cure resin system during the mold filling process. Therefore, it is advantageous to experimentally measure and evaluate the degree of cure because it requires much effort to predict the flow characteristics and cure of the fast curing resin. DMA and dielectric technique are the typical methods to measure the degree of cure of composite materials. In this paper, the resin flow and degree of cure were measured through the multi-channel dielectric system. A total of 8 channels of dielectric sensors were used and resin flow and degree of cure were measured and compared with each other under various pressure conditions.

A Feasibility Study of RTM Application on Secondary Fairing Structure of Aircraft (비용절감을 위한 항공기 2차 Fairing구조물의 RTM 적용 가능성 연구)

  • 김태곤;이동준;이건영;신대영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.189-192
    • /
    • 2002
  • The autoclave process is frequently utilized in the manufacturing of aircraft parts because of the low void content and high fiber volume fraction. However, due to the slow curing process (5∼8 hours per part) and it's limited producibility for complicated shape, this process is very expensive and applied to the relatively simple geometry structures. RTM is considered as an alternative process to overcome the limitation of autoclave process. In this study, the idea of RTM application on the secondary Fairing structure of aircraft has been proved to be technically feasible and very cost effective by changing the multiple part of subassembly into one integral composite structure.

  • PDF

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

Analysis of RTM Process Using the Extended Finite Element Method (확장 유한 요소 법을 적용한 RTM 공정 해석)

  • Jung, Yeonhee;Kim, Seung Jo;Han, Woo-Suck
    • Composites Research
    • /
    • 제26권6호
    • /
    • pp.363-372
    • /
    • 2013
  • Numerical simulation for Resin Transfer Molding manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions. Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with a simple channel flow model. Several application examples are analyzed to demonstrate ability of this method.

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

Simulation for the Filling Process of Resin Transfer Molding by Incorporating Composity Grids (복합격자법을 이용한 수지이동성형의 충전공정에 대한수치모사)

  • 이성재
    • The Korean Journal of Rheology
    • /
    • 제9권3호
    • /
    • pp.103-110
    • /
    • 1997
  • 고분자 복합재료 제조방법의 하나인 수지이동성형의 충전공정을 모사하기 위한 수 치모사 코드를 개발하였다. 수지이동성형의 충정공정문제를 수학적 공식으로 표현하기 위하 여 비등방성 다공질체를 통과하는 유동에 대한 이론을 사용하였다. 과도상태로 진행하는 자 유표면의 동적 충전거동을 묘사하기 위하여 수치격자 생성을 포괄하는 경계적합 좌표계의 계산기법을 적용하였다. 이와 아울러 불규칙적인 구저와 다중으로 연결된 금형면의 충전모 사에 저합한 복합격자의 개념을 도입하였다. 복합격자들 간의 가상의 경계에 대해서는 검사 체적 기법을 이용하여 물질보존을 만족시켜 주었다. 임의의 금형 두께와 투과도를 가지는 다수의 금형면이 결합된 두 개의 입구를 지닌 금형을 대상으로 하여 몇가지 예를 시험해 보 았다. 수치모사의결과 복합격자의 개념을 도입한 수치모사 코드는 수지이동성형의 복잡한 충전공정을 보다 정교하게 모사하는데 응용될수 있음을 보여주었다.

  • PDF

Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials (신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법)

  • 진우석;권재욱;이대길;유애권
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF