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Abstract: The cell modeling homogenization method to derive the constitutive equation considering the microstructures of
the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane
composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-
posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification
purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-
posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine
through RTM (resin transtfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed
well with predicted values obtained for two volume fractions.
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Introduction

Multi-axial fiber reinforced composites have been applied
to various Industrial fields, because of their remarkable
material properties such as high damage tolerance, fatigue
and impact resistances, and interlaminar failure reduction as
well as their practicality. Recently, the application has been
further extended to automotive and airspace industries. Among
various methods fabricating multi-axial fiber reinforced
composites, the braiding technique has the advantage of
convenient handling, which enables manufacturers to fabricate
composites in various shapes such as I-beam, H-beam and
even tube shapes.

Because the physical property of the composite is dependent
on its geometric structure as well as the material property of
composing materials, the geometric modeling to describe
microstructures of fiber reinforced composites is necessary
to understand their properties and therefore also to design
composites. Early works on the geometric modeling of fiber
reinforced composites were limited to 2D plane composites
and 3D rectangular shaped composites, in which yarn paths
were assumed straight[1,2]. As for rectangular braided
composites, Li and El Shiekh[3] proposed the unit cell
model by considering the carrier movement, but they used
straight yarn paths having circular yarn cross sections.
Pandey and Hahn[4] suggested the model, which can represent
the volume fraction change by taking account of yarn
crimping and jamming effects. Chen et al.[5] and Byun and
Chou[6] considered the unit cell, which is divided into the
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surface cell and the inner cell. For 3D circular braided
composites, Hammad ef al.[7] projected the 3D unit cell into
the 2D plane for simplification and elliptic curves were
assumed for yarn paths.

The efforts to predict mechanical properties of composites
based on unit cell geometries are found in various works
including the one by Du and Ko[8], which showed that
braided composites have more strength than laminated
composites. Masters er al.[9] proposed the diagonal brick
model, but using straight yarn paths which unrealistically
penetrate each other. Later, Byun[10] introduced the bent
yarn structure to avoid penetrations of yarns. Bigaud and
Hamelin{11,12] developed the cell modeling method con-
sidering the equilibrium and strain continuity conditions,
saving a significant amount of computation time and memory
resources, but the effort was limited to 3D rectangular shaped
composites.

Here, the cell modeling method has been further extended
for 3D circular braided composites, using B-spline curves
and elliptic yarn cross sections to describe the more realistic
geometry of 3D braided composites. Constitutive equations
for 3D circular braided composites have been derived based
on the homogenization technique using the cell modeling
method. For verification purposes, application has been
made for elastic tensile properties of the 3D circular braided
glass fiber reinforced composite. Prepregs of 3D circular
braided glass fiber reinforced composite have been fabricated
using the 3D braiding machine through RTM with epoxy as
a matrix. The uniaxial tensile test was performed for two
volume fractions, for comparison with predictions made from
the constitutive equation developed.
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Geometric Modeling

For composite materials, a unit cell is defined as a repeating
geometric structure, which can represent material properties
of composites. Therefore, 3D circular braided composites are
composed of numerous unit cells and one unit cell is also
considered made up of several basic cells which share the same
morphological structure with the unit cell. The schematic
shape of the unit cell in the 3D circular braided composite is
shown in Figure 1. The structure of the basic cell depends on
yarn paths passing through the basic cell and Figure 2 shows
a schematic view of a basic cell, in which two yarn paths
cross each other in the basic cell. The unit cell can be
typically divided into three kinds of basic cells: the inner
cell, the outer surface cell and the inner surface cell as shown
in Figure 3.

In order to define the yarn geometry, it is convenient to
introduce a local coordinate system embedded on the yarn. If
the yarn path is regarded as a 3D curve, three orthogonal
vectors are defined at any position on the yarn path: the
tangent vector ¢, the principal normal vector # and the binormal
vector b. Therefore, the direction of the yarn path can be
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Figure 1. A schematic view of the unit cell.
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Figure 2. A schematic view of the basic cell.

Wonoh Lee et al.

determined considering the tangent vector, and the principal
normal vector and the binormal vector become two orthogonal
axes on the yarn cross section, which is normal to the yarn
path. Figure 4 shows the local coordinate system with the
three orthogonal vectors defined for the yarn path and the
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Figure 4. (a) The local coordinate system with the orthogonal
vectors defined on the yarn and (b) the (assumed elliptic) cross-
sectional shape.
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Figure 5. Control points for the B-spline yarn path.

cross-sectional shape. As for the yarn cross-section, elliptic
and lenticular contours are generally used for the simplifica-
tion. Figure 4 shows an exemplary elliptic cross-section with
the major and minor axes of the ellipse and the principal
normal and binormal vectors.

In order to describe the curved yarn path (supposed by, the
path of the cross-sectional center), the B-spline curve is used
here, which has 10 control points and 3rd order knots. Figure
5 shows how to determine 10 control points around the region
where two yarns cross each other. This region is divided into
the contact region and the straight region considering the
yarn thickness and the distance between neighboring yarns.
After determining the contact and straight regions, the
checking control points ~ are obtained such that the direction
of the convexity of the yarn does not change. And then, all
10 control points are determined by translating the checking
control points ~ along the minor axis and considering the
symmetry of the yarn path with respect to the minor axis and
finally, the yarn path is obtained as a B-spline curve as
shown in Figure 6. Figure 7 shows the top view of yarns
crossing each other with the crossing angle y. Here, the line
AB (and A’B’) are the top view of the cross-section of one
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Figure 6. The B-Spline yarn path.
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Top view

Figure 7. The top view of yarns crossing each other.

member. The figure illustrates the one end A of the cross-
section makes earlier contact with the other yarn than the
other end B does unless = 90° (or 180°) so that the angle ¢
in Figure 4 changes as two yarns cross over each other,
which was also taken care of in this work. Through this
procedure, the basic cell and the unit cell of the 3D circular
braided composite are obtained as schematically shown in
Figures 8 and 9 respectively.

Figure 8. (a) The schematic views of the yarn shape and (b) the
basic cell.
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Figure 9. The unit cell of the 3D circular braided composite.

Mechanical Modeling

The constitutive equation of fiber reinforced composites
can be derived considering their geometric structures using
homogenization techniques. Because the homogenization
based on multi-level meshing demands so much computation
time and memory resources, it is difficult to apply the
homogenization for the case of unit cell structures with
complex geometry. In order to overcome this disadvantage,
the cell modeling method has been introduced. In the cell
modeling method, the unit cell is subdivided into several
sub-cells and the stiffness matrix of the unit cell is determined
considering the force equilibrium and strain continuity
conditions between the unit cell and the sub-cell[11,12].

Assuming that the 3D circular braided composite is an
orthotropic elastic material and the size of unit cell is small
enough compared to the whole composite structure, consider
a unit cell, which is subdivided into NN N, sub-cells having
the same shape and size as shown in Figure 10. Now, the
constitutive relations of the unit cell and the sub-cell are,

respectively,
X=TE and o0 =ce& )

Here, X, I, and E are stress tensor, stiffness matrix and
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Figure 10. The unit cell subdivided into N,N,N, sub-cells.

strain tensor of the unit cell and @, ¢, and € are those of the
sub-cell. The relationship between I'and ¢ is obtained after
the relationship between E and € is considered based on the
equilibrium condition and the strain continuity. Note that
because X'is the average of the local stresses ©.

The strain continuity condition requires that the global
strain E is the average of local strain € of each sub-cell under
the condition that the size of the sub-cell is the same.
Therefore,

N
SES = NE,, forall (j,k
N, | -
S et = NE,, forall (i, k)
2 vy
N. -
el = NE, forall( )
k 2)
N, N L
>>elt = NNE, forall (i)
2 2.5 Wb
N, N, ‘
S>Selt = NNE, forall())
ik
N, N,
for all (k)

Syl = NNE,
i

where (i, j, k) are the indices to identically each sub-cell.
There are NN+ NN.+ NN, + N + N, +N. equations in
equation (2).
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Figure 11. Application of the cell modeling method in multi-levels:
(a) lowest level, (b) intermediate level, and (c) continuum level.

The force equilibrium condition gives the stress relation-
ship between adjacent sub-cells having the same contact
surface area. Therefore,
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for all (i, j, k) except on boundaries.

Equation (3) gives 6NNN. —NN.—-NN,—NN,-N,—
N,— N, equations. After considering the linear elastic
constitutive equations of the sub-cell shown in equation (1),
equation (3) becomes

cf]._l,'. ghirk

Xy

ik gk
+L+cter™

Xy

i+ Lk i+, k

(e et i+1,j,kgi+l._j,k) -0 4)

+L+cy, oy
for all (i, j, k) except on boundaries.
Note here that the orthotropic elastic stiffness coefficients

¢"* for the resin and composing yarns. Now, equations (2)
and (3) are rewritten as,

[L][e] = [M]IE]

r 1,1, 7 X
(€] et E,
M . N gk E
where [E]=| [e]”* | [€7'=]™ | [(El1=| Y] )
M M M
NN gijj:.k E.\:\'
LLel ™
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Here, [€]""* and [E] are 6 x | matrices and [€] becomes a
6N.N,N. x | matrix. Besides, [M] is a 6N ,N,N_ x 6 matrix
and [L] is a 6N,N,N, x 6N,N,N, matrix. When solved with
respect to [ €], equation (5) becomes

[€] = [L]'[M]LE] = [K][E] (6)

where [K], 6N.N,N_ x 6 Inatrikx, can be expressed as a set of
6 x 6 element matrices [K]"" as

11,1 7

" (K]
M

(K] = | [k (M

In equation (6), the relationship between the local strain € of
the sub-cell and the global strain E of the unit cell is
obtained as

lel”* = [K1"ME] (8)

The global stress X of the unit cell is defined as the average
local stress o of the sub-cell; i.e.,

Ny Ny,

> lol"*
ik
3] = »Js
(2] N.NN,
z ot
2y, ijok .
where [Z] = ||, [0 = O,y ©)
M M
Z‘.\'.\‘ O’I\",k

After considering equations (1) and (8), the global stiffness
matrix I'is finally obtained from equation (9) as

N NN,

2 el R
ik
= 10
(] NN (10)
where [I'] is a 6 x 6 matrix. Note that [K]*/* already

includes the components of [¢]*/*.

Note that the cell modeling method based on sub-cells
having the same shape and size can also be effectively
applied for the case where the size and shape of the sub-cells
are not the same, by introducing the multi-level scheme
shown in Figure 11. In this example case made of three
levels, the sub-cells at the intermediate and continuum levels
have the same size and shape but the sub-cells of the
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Figure 12. An example of multi-level meshing considering the
yarn path.

intermediate level are selectively further divided into smaller
meso-cells considering the location of composing materials:
the resin-type meso-cell and the yarn type meso-cell with
dark color in Figure 11(a). Now, the cell modeling method is
applied only for the sub-cell having the four meso-cells in
Figure 11(a) to obtain the sub-cell stiffness. This sub-cell
stiffness is then used in the intermediate level to calculate the
continuum level stiffness using the cell modeling method. In
this procedure, the orthogonal property of the yarn is
accounted for considering the local direction of the yarn
path. An example of the multi-level meshing considering the
yarn path is shown in Figure 12.

Experiment and Results

The 3D circular braided glass fiber reinforced composite
preform was fabricated using the 3D braiding machine
having 2014 carriers and 104 pistons. The 4 step cycle carrier
movement is schematically shown in Figure 13. Figure 14
shows the completed preform was placed RTM process
using the epoxy resin with a curing agent. It tooks about 10
hours to inject the resin into the RTM cast and then, the 3D
circular braided composite was obtained after curing in the
oven at 130°C for 90 min. In order to determine the yarn
volume fraction of the 3D circular braided composite, the
mass of the glass fiber was measured after the resin was
removed in combustion in the furnace at 600 °C for 3 hours.

To verify the performance of the constitutive equation
derived using the geometric and cell modeling methods, the
predicted uniaxial tensile properties of the 3D circular
braided composite were compared with experiments for the
axial and transverse directions. Figure 15 shows the tensile
test specimen. The measured and predicted Young’s moduli
are compared in Figure 16 for two volume fractions. The
figure shows that the predicted values agree well with
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2 step

Figure 13. A schematic view of the 4 step cycle carrier movement
in the 3D circular braiding machine. ’

Figure 14. The 3D circular braided glass fiber perform and its axial
direction.

experimental results in each direction and volume fraction.
Summary

The homogenization technique to derive the constitutive
equations of fiber reinforced composites based on the cell
modeling method has been previously developed for composites
with simple geometry and the method was further extended
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Figure 15. (a) The 3D circular braided composite specimen and (b) its dimension for the tensile test.

5.0e+10
C  Experiment(Avg.)

?4.Sc+10' B Predicted %

&
7 4.0e+10 -
=
2 3.5e+10 1
=

€ 3.0e+10 |

-

S

2.5e+10 {

Young
-

2.0e+10 -

1.5¢+10 T . . .
30 35 40 45 50 55
Volume fraction (%)

(a)

2.4e+10
O  Experiment(Avg.)
B Predicted

2.2e+10 1
2.0e+10
1.8e+10

udulus (Pa)

£ 1.6e+10 1

1.0e+10 - —— : —
25 30 35 40 45 50 55
Volume fraction (%)
(b)
Figure 16. Comparison of Young’s moduli (a) in the axial direction
and (b) in the transverse direction for the uniaxial tensile test.

in this work for the 3D circular braided composite having
more complex geometry. For the geometric modeling of the
unit cell, B-spline curves were introduced. For verification

purposes, prepregs of 3D circular braided glass fiber reinforced
composites were fabricated using the 3D braiding machine
through RTM and the predicted and measured Young’s
moduli were measured in the axial and transverse directions
for two volume fractions. The predicted values obtained from
the constitutive equation agreed well with experimental results.
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