• 제목/요약/키워드: RSV replication

검색결과 5건 처리시간 0.021초

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs

  • Fang, Ying;Choi, Jae Young;Park, Dong Hwan;Park, Min Gu;Kim, Jun Young;Wang, Minghui;Kim, Hyun Ji;Kim, Woo Jin;Je, Yeon Ho
    • The Plant Pathology Journal
    • /
    • 제36권3호
    • /
    • pp.280-288
    • /
    • 2020
  • RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.

Respiratory Syncytial Virus (RSV) Modulation at the Virus-Host Interface Affects Immune Outcome and Disease Pathogenesis

  • Tripp, Ralph A.
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.163-167
    • /
    • 2013
  • The dynamics of the virus-host interface in the response to respiratory virus infection is not well-understood; however, it is at this juncture that host immunity to infection evolves. Respiratory viruses have been shown to modulate the host response to gain a replication advantage through a variety of mechanisms. Viruses are parasites and must co-opt host genes for replication, and must interface with host cellular machinery to achieve an optimal balance between viral and cellular gene expression. Host cells have numerous strategies to resist infection, replication and virus spread, and only recently are we beginning to understand the network and pathways affected. The following is a short review article covering some of the studies associated with the Tripp laboratory that have addressed how respiratory syncytial virus (RSV) operates at the virus-host interface to affects immune outcome and disease pathogenesis.

Antiviral activity of Herba Patrinea (a Chinese medicinal herb) against respiratory syncytial virus in vitro

  • Li, Hong-Yuan;Li, Shan-Shan;Liu, Dian-Li;Dong, Yan-Mei;Tian, Wen-Jing
    • Advances in Traditional Medicine
    • /
    • 제3권2호
    • /
    • pp.106-110
    • /
    • 2003
  • Respiratory syncytial virus (RSV) has long been considered an important cause of severe lower respiratory tract infection in infants and young children throughout the world. Unfortunately, no effective treatment of RSV exists. Therefore, New agents are needed to reduce the impact of RSV. We have studied the anti-viral effect of traditional Chinese midicinal herbs for over ten years and find Herba Patrinea (a Chinese medicinal herb) has the anti-RSV effect in vitro. In this study, the Herba Patrinea was extracted with hot water, condensed and sterilized. The cytotoxicity of the aqueous extract was tested by adding the diluted extract directly to HeLa cells and its effect on anti-RSV was estimated by the CPEI assay. As a result, the median cytotoxic concentration $(CC_{50})$ of Herba Patrinea was 32 mg/ ml by morphological observation, the median effective concentration (50% effective concentration, $EC_{50}$) of the Herba Patrinea against replication of the Long strain of RSV in HeLa cells were 1.25 mg/ml. The selectivity index $(SI=CC_{50}/EC{50})$ is 25.6. Moreover, Herba Patrinea gave a dose-dependent response in inhibiting RSV. In time of addition experiment, Herba Patrinea inhibited replication of RSV in HeLa cells when it was added at 0h, 2h, and 4h after virus infection. In summary, the results of this study suggest Herba Patrinea may be a novel anti-RSV drug and it is worthy of further studying.

Immunogenicity and Protective Efficacy of a Dual Subunit Vaccine Against Respiratory Syncytial Virus and Influenza Virus

  • Park, Min-Hee;Chang, Jun
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.261-268
    • /
    • 2012
  • Respiratory syncytial virus (RSV) and influenza virus are the most significant pathogens causing respiratory tract diseases. Composite vaccines are useful in reducing the number of vaccination and confer protection against multiple infectious agents. In this study, we generated fusion of RSV G protein core fragment (amino acid residues 131 to 230) and influenza HA1 globular head domain (amino acid residues 62 to 284) as a dual vaccine candidate. This fusion protein, Gcf-HA1, was bacterially expressed, purified by metal resin affinity chromatography, and refolded in PBS. BALB/c mice were intranasally immunized with Gcf-HA1 in combination with a mucosal adjuvant, cholera toxin (CT). Both serum IgG and mucosal IgA responses specific to Gcf and HA1 were significantly increased in Gcf-HA1/CT-vaccinated mice. To determine the protective efficacy of Gcf-HA1/CT vaccine, immunized mice were challenged with RSV (A2 strain) or influenza virus (A/PR/8/34). Neither detectable viral replication nor pathology was observed in the lungs of the immune mice. These results demonstrate that immunity induced by intranasal Gcf-HA1/CT immunization confers complete protection against both RSV and homologous influenza virus infection, suggesting our Gcf-HA1 vaccine candidate could be further developed as a dual subunit vaccine against RSV and influenza virus.

Small Non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their Biogenesis, Function and Implication in Human Diseases

  • Fu, Yu;Lee, Inhan;Lee, Yong Sun;Bao, Xiaoyong
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.94-101
    • /
    • 2015
  • tRNA-derived RNA fragments (tRFs) are an emerging class of non-coding RNAs (ncRNAs). A growing number of reports have shown that tRFs are not random degradation products but are functional ncRNAs made of specific tRNA cleavage. They play regulatory roles in several biological contexts such as cancer, innate immunity, stress responses, and neurological disorders. In this review, we summarize the biogenesis and functions of tRFs.