DOI QR코드

DOI QR Code

Small Non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their Biogenesis, Function and Implication in Human Diseases

  • Fu, Yu (Department of Pediatrics, University of Texas Medical Branch) ;
  • Lee, Inhan (miRcore, Ann Arbor) ;
  • Lee, Yong Sun (Department of Biochemistry and Molecular Biology, University of Texas Medical Branch) ;
  • Bao, Xiaoyong (Department of Pediatrics, University of Texas Medical Branch)
  • Received : 2015.11.21
  • Accepted : 2015.12.21
  • Published : 2015.12.31

Abstract

tRNA-derived RNA fragments (tRFs) are an emerging class of non-coding RNAs (ncRNAs). A growing number of reports have shown that tRFs are not random degradation products but are functional ncRNAs made of specific tRNA cleavage. They play regulatory roles in several biological contexts such as cancer, innate immunity, stress responses, and neurological disorders. In this review, we summarize the biogenesis and functions of tRFs.

Keywords

References

  1. Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet 2010;11:559-571. https://doi.org/10.1038/nrg2814
  2. Ponting CP. The functional repertoires of metazoan genomes. Nat Rev Genet 2008;9:689-698. https://doi.org/10.1038/nrg2413
  3. Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009;23:2639-2649. https://doi.org/10.1101/gad.1837609
  4. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 2010;285:10959-10968. https://doi.org/10.1074/jbc.M109.077560
  5. Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 2013;21:368-379. https://doi.org/10.1038/mt.2012.237
  6. Deng J, Ptashkin RN, Wang Q, Liu G, Zhang G, Lee I, et al. Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. Mol Ther Nucleic Acids 2014;3:e163. https://doi.org/10.1038/mtna.2014.18
  7. Morris KV. RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides 2009;19:299-306. https://doi.org/10.1089/oli.2009.0212
  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  9. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005;132:4645-4652. https://doi.org/10.1242/dev.02070
  10. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009;4:199-227. https://doi.org/10.1146/annurev.pathol.4.110807.092222
  11. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-498. https://doi.org/10.1038/35078107
  12. Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 2007;8: 884-896. https://doi.org/10.1038/nrg2179
  13. Nilsen TW. Endo-siRNAs: yet another layer of complexity in RNA silencing. Nat Struct Mol Biol 2008;15:546-548. https://doi.org/10.1038/nsmb0608-546
  14. Kennedy D. Breakthrough of the year. Science 2002;298:2283. https://doi.org/10.1126/science.298.5602.2283
  15. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-811. https://doi.org/10.1038/35888
  16. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10:94-108. https://doi.org/10.1038/nrg2504
  17. Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008;135:1201-1214. https://doi.org/10.1242/dev.005629
  18. Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, et al. Tiny RNAs associated with transcription start sites in animals. Nat Genet 2009;41:572-578. https://doi.org/10.1038/ng.312
  19. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007;316:1484-1488. https://doi.org/10.1126/science.1138341
  20. Giege R. Toward a more complete view of tRNA biology. Nat Struct Mol Biol 2008;15:1007-1014. https://doi.org/10.1038/nsmb.1498
  21. Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev 2010;24:1832-1860. https://doi.org/10.1101/gad.1956510
  22. Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med 2014;20:306-314. https://doi.org/10.1016/j.molmed.2014.01.008
  23. Abe T, Inokuchi H, Yamada Y, Muto A, Iwasaki Y, Ikemura T. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data. Front Genet 2014;5:114.
  24. Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 2009; 37:D93-D97. https://doi.org/10.1093/nar/gkn787
  25. Parisien M, Wang X, Pan T. Diversity of human tRNA genes from the 1000-genomes project. RNA Biol 2013;10:1853-1867. https://doi.org/10.4161/rna.27361
  26. Li H. Complexes of tRNA and maturation enzymes: shaping up for translation. Curr Opin Struct Biol 2007;17:293-301. https://doi.org/10.1016/j.sbi.2007.05.002
  27. Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, Webb-Robertson BJ, et al. A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses. PLoS One 2013;8:e69374. https://doi.org/10.1371/journal.pone.0069374
  28. Schiffer S, Rosch S, Marchfelder A. Assigning a function to a conserved group of proteins: the tRNA 3'-processing enzymes. EMBO J 2002;21:2769-2777. https://doi.org/10.1093/emboj/21.11.2769
  29. Aebi M, Kirchner G, Chen JY, Vijayraghavan U, Jacobson A, Martin NC, et al. Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem 1990;265:16216-16220.
  30. Pederson T. Regulatory RNAs derived from transfer RNA? RNA 2010;16:1865-1869. https://doi.org/10.1261/rna.2266510
  31. Sobala A, Hutvagner G. Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA 2011;2:853-862. https://doi.org/10.1002/wrna.96
  32. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010;16:673-695. https://doi.org/10.1261/rna.2000810
  33. Buhler M, Spies N, Bartel DP, Moazed D. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. Nat Struct Mol Biol 2008;15:1015-1023. https://doi.org/10.1038/nsmb.1481
  34. Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009;15:2147-2160. https://doi.org/10.1261/rna.1738409
  35. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 2009;151:2120-2132. https://doi.org/10.1104/pp.109.147280
  36. Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, et al. Deep-sequencing of human Argonauteassociated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 2011;8:158-177. https://doi.org/10.4161/rna.8.1.14300
  37. Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, et al. Hidden layers of human small RNAs. BMC Genomics 2008;9:157. https://doi.org/10.1186/1471-2164-9-157
  38. Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 2009;37:6575-6586. https://doi.org/10.1093/nar/gkp707
  39. Couvillion MT, Sachidanandam R, Collins K. A growth-essential Tetrahymena Piwi protein carries tRNA fragment cargo. Genes Dev 2010;24:2742-2747. https://doi.org/10.1101/gad.1996210
  40. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008;22:2773-2785. https://doi.org/10.1101/gad.1705308
  41. Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, et al. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS One 2010;5:e10563. https://doi.org/10.1371/journal.pone.0010563
  42. Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009;185:35-42. https://doi.org/10.1083/jcb.200811106
  43. Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Nishida H, et al. Human cytosolic tRNase ZL can downregulate gene expression through miRNA. FEBS Lett 2009;583:3241-3246. https://doi.org/10.1016/j.febslet.2009.09.015
  44. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011;43:613-623. https://doi.org/10.1016/j.molcel.2011.06.022
  45. Gebetsberger J, Zywicki M, Kunzi A, Polacek N. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 2012;2012:260909.
  46. Sobala A, Hutvagner G. Small RNAs derived from the 5' end of tRNA can inhibit protein translation in human cells. RNA Biol 2013;10:553-563. https://doi.org/10.4161/rna.24285
  47. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009;10:126-139.
  48. Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett 2014;588:4297-4304. https://doi.org/10.1016/j.febslet.2014.09.001
  49. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012;31:978-991. https://doi.org/10.1038/onc.2011.304
  50. Tello-Montoliu A, Patel JV, Lip GY. Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 2006;4:1864-1874. https://doi.org/10.1111/j.1538-7836.2006.01995.x
  51. Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai) 2008;40:619-624. https://doi.org/10.1111/j.1745-7270.2008.00442.x
  52. Li S, Hu GF. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 2012;227:2822-2826. https://doi.org/10.1002/jcp.23051
  53. Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 2014;34:2450-2463. https://doi.org/10.1128/MCB.00136-14
  54. Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nat Genet 2006;38: 411-413. https://doi.org/10.1038/ng1742
  55. van Es MA, Schelhaas HJ, van Vught PW, Ticozzi N, Andersen PM, Groen EJ, et al. Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol 2011;70:964-973. https://doi.org/10.1002/ana.22611
  56. Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 2013;495:474-480. https://doi.org/10.1038/nature11923
  57. Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 2014;157:636-650. https://doi.org/10.1016/j.cell.2014.02.058
  58. Schaffer AE, Eggens VR, Caglayan AO, Reuter MS, Scott E, Coufal NG, et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 2014;157:651-663. https://doi.org/10.1016/j.cell.2014.03.049
  59. Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. Wiley Interdiscip Rev RNA 2015;6:47-63. https://doi.org/10.1002/wrna.1255
  60. Li F, Ding SW. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 2006;60:503-531. https://doi.org/10.1146/annurev.micro.60.080805.142205
  61. Deng J, Ptashkin RN, Chen Y, Cheng Z, Liu G, Phan T, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol Ther 2015;23:1622-1629. https://doi.org/10.1038/mt.2015.124
  62. Ruggero K, Guffanti A, Corradin A, Sharma VK, De Bellis G, Corti G, et al. Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase. J Virol 2014;88:3612-3622. https://doi.org/10.1128/JVI.02823-13
  63. van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001;7:719-724. https://doi.org/10.1038/89098
  64. Edwards KM, Zhu Y, Griffin MR, Weinberg GA, Hall CB, Szilagyi PG, et al. Burden of human metapneumovirus infection in young children. N Engl J Med 2013;368:633-643. https://doi.org/10.1056/NEJMoa1204630
  65. Englund JA, Boeckh M, Kuypers J, Nichols WG, Hackman RC, Morrow RA, et al. Brief communication: fatal human metapneumovirus infection in stem-cell transplant recipients. Ann Intern Med 2006;144:344-349. https://doi.org/10.7326/0003-4819-144-5-200603070-00010
  66. Esper F, Martinello RA, Boucher D, Weibel C, Ferguson D, Landry ML, et al. A 1-year experience with human metapneumovirus in children aged <5 years. J Infect Dis 2004; 189:1388-1396. https://doi.org/10.1086/382482
  67. Falsey AR, Erdman D, Anderson LJ, Walsh EE. Human metapneumovirus infections in young and elderly adults. J Infect Dis 2003;187:785-790. https://doi.org/10.1086/367901
  68. Parisien M, Wang X, Perdrizet G, 2nd, Lamphear C, Fierke CA, Maheshwari KC, et al. Discovering RNA-protein interactome by using chemical context profiling of the RNA-protein interface. Cell Rep 2013;3:1703-1713. https://doi.org/10.1016/j.celrep.2013.04.010
  69. Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 2015;16:98-112. https://doi.org/10.1038/nrg3861
  70. Raina M, Ibba M. tRNAs as regulators of biological processes. Front Genet 2014;5:171.
  71. Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014;12:78. https://doi.org/10.1186/s12915-014-0078-0
  72. Gebetsberger J, Polacek N. Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 2013;10:1798-1806. https://doi.org/10.4161/rna.27177
  73. Garcia-Silva MR, Cabrera-Cabrera F, Guida MC, Cayota A. Hints of tRNA-Derived Small RNAs Role in RNA Silencing Mechanisms. Genes (Basel) 2012;3:603-614. https://doi.org/10.3390/genes3040603

Cited by

  1. MicroRNAs and tRNA-derived fragments predict the transformation of myelodysplastic syndromes to acute myeloid leukemia vol.58, pp.9, 2017, https://doi.org/10.1080/10428194.2016.1272680
  2. Ancient and modern: hints of a core post-transcriptional network driving chemotherapy resistance in ovarian cancer vol.9, pp.1, 2017, https://doi.org/10.1002/wrna.1432
  3. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III vol.9, pp.2, 2017, https://doi.org/10.2217/epi-2016-0108
  4. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants vol.93, pp.1-2, 2017, https://doi.org/10.1007/s11103-016-0545-9
  5. Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis pp.1476-5594, 2017, https://doi.org/10.1038/onc.2017.285
  6. Current Research on Non-Coding Ribonucleic Acid (RNA) vol.8, pp.12, 2017, https://doi.org/10.3390/genes8120366
  7. ) embryos vol.49, pp.9, 2017, https://doi.org/10.1152/physiolgenomics.00016.2017
  8. Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer vol.17, pp.1, 2018, https://doi.org/10.1186/s12943-018-0767-3
  9. A tRNA-derived RNA Fragment Plays an Important Role in the Mechanism of Arsenite -induced Cellular Responses vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34899-2