DOI QR코드

DOI QR Code

Immunogenicity and Protective Efficacy of a Dual Subunit Vaccine Against Respiratory Syncytial Virus and Influenza Virus

  • Park, Min-Hee (Division of Life & Pharmaceutical Sciences, Ewha Womans University) ;
  • Chang, Jun (Division of Life & Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2012.10.29
  • Accepted : 2012.11.16
  • Published : 2012.12.31

Abstract

Respiratory syncytial virus (RSV) and influenza virus are the most significant pathogens causing respiratory tract diseases. Composite vaccines are useful in reducing the number of vaccination and confer protection against multiple infectious agents. In this study, we generated fusion of RSV G protein core fragment (amino acid residues 131 to 230) and influenza HA1 globular head domain (amino acid residues 62 to 284) as a dual vaccine candidate. This fusion protein, Gcf-HA1, was bacterially expressed, purified by metal resin affinity chromatography, and refolded in PBS. BALB/c mice were intranasally immunized with Gcf-HA1 in combination with a mucosal adjuvant, cholera toxin (CT). Both serum IgG and mucosal IgA responses specific to Gcf and HA1 were significantly increased in Gcf-HA1/CT-vaccinated mice. To determine the protective efficacy of Gcf-HA1/CT vaccine, immunized mice were challenged with RSV (A2 strain) or influenza virus (A/PR/8/34). Neither detectable viral replication nor pathology was observed in the lungs of the immune mice. These results demonstrate that immunity induced by intranasal Gcf-HA1/CT immunization confers complete protection against both RSV and homologous influenza virus infection, suggesting our Gcf-HA1 vaccine candidate could be further developed as a dual subunit vaccine against RSV and influenza virus.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Ministry of Health & Welfare

References

  1. Falsey, A. R. and E. E. Walsh. 2005. Respiratory syncytial virus infection in elderly adults. Drugs Aging 22: 577-587. https://doi.org/10.2165/00002512-200522070-00004
  2. Murphy, B. R. and E. E. Walsh. 1988. Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J. Clin. Microbiol. 26: 1595-1597.
  3. Connors, M., N. A. Giese, A. B. Kulkarni, C. Y. Firestone, H. C. 3rd Morse, and B. R. Murphy. 1994. Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of interleukin-4 (IL-4) and IL-10. J. Virol. 68: 5321-5325.
  4. Kim, H. W., S. L. Leikin, J. Arrobio, C. D. Brandt, R. M. Chanock, and R. H. Parrott. 1976. Cell-mediated immunity to respiratory syncytial virus induced by inactivated vaccine or by infection. Pediatr. Res. 10: 75-78. https://doi.org/10.1203/00006450-197601000-00015
  5. Waris, M. E., C. Tsou, D. D. Erdman, S. R. Zaki, and L. J. Anderson. 1996. Respiratory synctial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern. J. Virol. 70:2852-2860.
  6. Collins, P. L., R. H. Purcell, W. T. London, L. A. Lawrence, R. M. Chanock, and B. R. Murphy. 1990. Evaluation in chimpanzees of vaccinia virus recombinants that express the surface glycoproteins of human respiratory syncytial virus. Vaccine 8: 164-168. https://doi.org/10.1016/0264-410X(90)90141-8
  7. Jang, J. E., J. B. Lee, K. H. Kim, S. M. Park, B. S. Shim, I. S. Cheon, M. K. Song, and J. Chang. 2011. Evaluation of protective efficacy of respiratory syncytial virus vaccine against A and B subgroup human isolates in Korea. PLoS ONE 6: e23797. https://doi.org/10.1371/journal.pone.0023797
  8. Yu, J. R., S. Kim, J. B. Lee, and J. Chang. 2008. Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J. Virol. 82: 2350-2357. https://doi.org/10.1128/JVI.02372-07
  9. Dormitzer, P. R., G. Galli, F. Castellino, H. Golding, S. Khurana, G. Del Giudice, and R. Rappuoli. 2011. Influenza vaccine immunology. Immunol. Rev. 239: 167-177. https://doi.org/10.1111/j.1600-065X.2010.00974.x
  10. Kim, S., D. H. Joo, J. B. Lee, B. S. Shim, I. S. Cheon, J. E. Jang, H. H. Song, K. H. Kim, M. K. Song, and J. Chang. 2012. Dual role of respiratory syncytial virus glycoprotein fragment as a mucosal immunogen and chemotactic adjuvant. PLoS One 7: e32226. https://doi.org/10.1371/journal.pone.0032226
  11. Lee, J. B., J. E. Jang, M. K. Song, and J. Chang. 2009. Intranasal delivery of cholera toxin induces th17-dominated T-cell response to bystander antigens. PLoS One 4: e5190. https://doi.org/10.1371/journal.pone.0005190
  12. Kim, S. and J. Chang. 2012. Baculovirus-based vaccine displaying respiratory syncytial virus glycoprotein induces protective immunity against RSV infection without vaccine- enhanced disease. Immune Netw. 12: 8-17. https://doi.org/10.4110/in.2012.12.1.8
  13. Bembridge, G. P., N. Rodriguez, R. Garcia-Beato, C. Nicolson, J. A. Melero, and G. Taylor. 2000. Respiratory syncytial virus infection of gene gun vaccinated mice induces Th2-driven pulmonary eosinophilia even in the absence of sensitisation to the fusion (F) or attachment (G) protein. Vaccine 19: 1038-1046. https://doi.org/10.1016/S0264-410X(00)00344-3
  14. Tripp, R. A., L. P. Jones, L. M. Haynes, H. Zheng, P. M. Murphy, and L. J. Anderson. 2001. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat. Immunol. 2: 732-738. https://doi.org/10.1038/90675
  15. Plotnicky-Gilquin, H., L. Goetsch, T. Huss, T. Champion, A. Beck, J. F. Haeuw, T. N. Nguyen, J. Y. Bonnefoy, N. Corvaïa, and U. F. Power. 1999. Identification of multiple protective epitopes (protectopes) in the central conserved domain of a prototype human respiratory syncytial virus G protein. J. Virol. 73: 5637-5645.
  16. Caton, A. J., G. G. Brownlee, J. W. Yewdell, and W. Gerhard. 1982. The antigenic structure of the influenza virusA/PR/8/34 hemagglutinin (H1 subtype). Cell 31: 417-427. https://doi.org/10.1016/0092-8674(82)90135-0
  17. Khurana, S., C. Larkin, S. Verma, M. B. Joshi, J. Fontana, A. C. Steven, L. R. King, J. Manischewitz, W. McCormick, R. K. Gupta, and H. Golding. 2011. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines. Vaccine 29: 5657-5665. https://doi.org/10.1016/j.vaccine.2011.06.014
  18. Song, L., V. Nakaar, U. Kavita, A. Price, J. Huleatt, J. Tang, A. Jacobs, G. Liu, Y. Huang, P. Desai, G. Maksymiuk, V. Takahashi, S. Umlauf, L. Reiserova, R. Bell, H. Li, Y. Zhang, W. F. McDonald, T. J. Powell, and L. Tussey. 2008. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS One 3: e2257. https://doi.org/10.1371/journal.pone.0002257

Cited by

  1. Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses vol.10, pp.5, 2012, https://doi.org/10.4161/hv.28407
  2. The Next Generation of Influenza Vaccines: Towards a Universal Solution vol.9, pp.1, 2012, https://doi.org/10.3390/vaccines9010026