• Title/Summary/Keyword: RNA stability

Search Result 210, Processing Time 0.032 seconds

Bioprospecting of Culturable Halophilic Bacteria Isolated from Mediterranean Solar Saltern for Extracellular Halotolerant Enzymes

  • Ahmed Mohamed Ali;Tahany M.A. Abdel-Rahman;Mohamed G. Farahat
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.76-87
    • /
    • 2024
  • Halophilic bacteria are promising reservoirs for halotolerant enzymes that have gained much attention in biotechnological applications due to their remarkable activity and stability. In this study, 62 halophilic bacterial strains isolated from a solar saltern were screened for the production of various extracellular enzymes. The results revealed that 31 strains (50%) were positive for amylase production while 26 strains (41.9%) were positive for protease. Further, 22 strains (35.48%) exhibited β-glucosidase activity and only 17 (27.41%) demonstrated lipase activity. Of the investigated halophiles, ten strains growing in the presence of ≥15% NaCl (w/v) were selected and identified based on their 16S rRNA gene sequences as Halomonas meridiana, Salinivibrio costicola, Virgibacillus oceani, Virgibacillus marismortui, Marinobacter lipolyticus, Halobacillus karajensis, Salicola salis, Pseudoalteromonas shioyasakiensis, Salinicoccus amylolyticus, and Paracoccus salipaludis. Therefore, the present study highlights the diversity of the culturable halophilic bacteria in a Mediterranean solar saltern, harboring various valuable halotolerant enzymes.

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Rajkumar, Renganathan;Ranishree, Jayappriyan Kothilmozhian;Ramasamy, Rengasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2011
  • A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

MiR-449a attenuates autophagy of T-cell lymphoma cells by downregulating ATG4B expression

  • Zhang, Nan;Qiu, Ling;Li, Tao;Wang, Xiao;Deng, Rui;Yi, Hai;Su, Yi;Fan, Fang-yi
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.254-259
    • /
    • 2020
  • Increasing evidence suggests the role of miR-449a in the regulation of tumorigenesis and autophagy. Autophagy plays an important role in the malignancy of T-cell lymphoma. However, it is still unknown whether miR-449a is associated with autophagy to regulate the malignancy of T-cell lymp homa. In this study, we for the first time demonstrated that miR-449a enhanced apoptosis of T-cell lymphoma cells by decreasing the degree of autophagy. Further, miR-449a downregulated autophagy-associated 4B (ATG4B) expression, which subsequently reduced the autophagy of T-cell lymphoma cells. Mechanistically, miR-449a decreased ATG4B protein level by binding to its mRNA 3'UTR, thus reducing the mRNA stability. In addition, studies with nude mice showed that miR-449a significantly inhibited lymphoma characteristics in vivo. In conclusion, our results demonstrated that the "miR-449a/ATG4B/autophagy" pathway played a vital role in the malignancy of T-cell lymphoma, suggesting a novel therapeutic target.

Exosome isolation from hemolymph of white-spotted flower chafer, Protaetia brevitarsis (Kolbe) (Coleoptera: Scarabaeidae).

  • Lee, Seokhyun;Kwon, Kisang;Song, Myung-Ha;Park, Kwan-ho;Kwon, O-Yu;Choi, Ji-young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Exosomes are homogenous vesicles of 40-100 nm diameter produced endogenously. Exosomes are generated by inward budding into multi-vesicular bodies (MVB) and then released to extracellular space. Exosomes contain various nucleic acid and protein cargoes from their cells of origin and this endosomal cellular molecules are used for intracellular communication and for both promotion and suppression of immune responses. Recently, they are also considered as delivery vehicle for therapeutic proteins due to their characteristics of stability in body fluids and ability for target uptake. Also, they show less immune reactivity because the isolated exosome harboring therapeutic proteins can be from the same host. White-spotted flower chafer, Protaetia brevitarsis is one of the major insect commercially reared in Korea. There are bacterial and fungal pathogens causing diseases in the beetle, and these diseases incur economic loss to the larva-rearing farms. Due to their endosomal cargoes, exosomes are good candidates in use of disease diagnosis. In this study, we isolated insect exosome from the hemolymph of P. brevitarsis, and verified it by analysis of the exosome-specific surface proteins and RNA.

ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells

  • Kim, Kui-Jin;Lee, Jihye;Park, Yeonhwa;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. CLA increases growth arrest and apoptosis of human colorectal cancer cells through an isomer-specific manner. ATF3 belongs to the ATF/CREB family of transcription factors and is associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which t10, c12-CLA stimulates ATF3 expression and apoptosis in human colorectal cancer cells. t10, c12-CLA increased an apoptosis in human colorectal cancer cells in dose dependent manner. t10, c12-CLA induced ATF3 mRNA and luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by t10, c12-CLA is located between -147 and -1850 of ATF3 promoter. mRNA stability of ATF3 was not affected by t10, c12-CLA treatment. t10, c12-CLA increases $GSK3{\beta}$ expression and suppresses IGF-1-stimulated phosphorylation of Akt. The knockdown of ATF3 suppressed expression of $GSK3{\beta}$ and NAG-1 and PARP cleavage. The results suggest that t10, c12-CLA induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

Rapid and Efficient Detection of 16SrI Group Areca Palm Yellow Leaf Phytoplasma in China by Loop-Mediated Isothermal Amplification

  • Yu, Shao-shuai;Che, Hai-yan;Wang, Sheng-jie;Lin, Cai-li;Lin, Ming-xing;Song, Wei-wei;Tang, Qing-hua;Yan, Wei;Qin, Wei-quan
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • Areca palm yellow leaf (AYL) disease caused by the 16SrI group phytoplasma is a serious threat to the development of the Areca palm industry in China. The 16S rRNA gene sequence was utilized to establish a rapid and efficient detection system efficient for the 16SrI-B subgroup AYL phytoplasma in China by loop-mediated isothermal amplification (LAMP). The results showed that two sets of LAMP detection primers, 16SrDNA-2 and 16SrDNA-3, were efficient for 16SrI-B subgroup AYL phytoplasma in China, with positive results appearing under reaction conditions of 64℃ for 40 min. The lowest detection limit for the two LAMP detection assays was the same at 200 ag/μl, namely approximately 53 copies/μl of the target fragments. Phytoplasma was detected in all AYL disease samples from Baoting, Tunchang, and Wanning counties in Hainan province using the two sets of LAMP primers 16SrDNA-2 and 16SrDNA-3, whereas no phytoplasma was detected in the negative control. The LAMP method established in this study with comparatively high sensitivity and stability, provides reliable results that could be visually detected, making it suitable for application and research in rapid diagnosis of AYL disease, detection of seedlings with the pathogen and breeding of disease-resistant Areca palm varieties.

Classification of Environmental Toxicants Using HazChem Human Array V2

  • An, Yu-Ri;Kim, Seung-Jun;Park, Hye-Won;Kim, Jun-Sub;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Toxicogenomics using microarray technology offers the ability to conduct large-scale detections and quantifications of mRNA transcripts, particularly those associated with alterations in mRNA stability or gene regulation. In this study, we developed the HazChem Human Array V2 using the Agilent Sure-Print technology-based custom array, which is expected to facilitate the identification of environmental toxicants. The array was manufactured using 600 VOCs and PAHs-specific genes identified in previous studies. In order to evaluate the viability of the manufactured HazChem human array V2, we analyzed the gene expression profiles of 9 environmental toxicants (6 VOCs chemicals and 3 PAHs chemicals). As a result, nine toxicants were separated into two chemical types-VOCs and PAHs. After the chip validations with VOCs and PAHs, we conducted an expression profiling comparison of additional chemical groups (POPs and EDCs) using data analysis methods such as hierarchical clustering, 1-way ANOVA, SAM, and PCA. We selected 58 genes that could be classified into four chemical types via statistical methods. Additionally, we selected 63 genes that evidenced significant alterations in expression with all 13 environmental toxicants. These results suggest that the HazChem Human Array V2 will expedite the development of a screening system for environmentally hazardous materials at the level of toxicogenomics in the future.

Doxorubicin Inhibits the Production of Nitric Oxide by Colorectal Cancer Cells

  • Jung, In-Duk;Lee, Jang-Soon;Yun, Seong-Young;Park, Chang-Gyo;Han, Jeung-Whan;Lee, Hyang-Woo;Lee, Hoi-Young
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.691-696
    • /
    • 2002
  • Doxorubicin (DOX) is an active and broad spectrum chemotherapeutic agent. Increased inducible nitric oxide synthase (NOS) expression and/or activity have been reported in several human tumors. While the relationship between DOX treatment and the enzymatic activity of endothelial NOS has been well characterized, little is known about the effects of DOX on the expression of iNOS in human cancer cells. In the present study, we characterized the effects of DOX on the nitric oxide (NO) production by colorectal cancer cells, DLD-1. IFN-${\gamma}$/IL-1$\beta$ (CM) increased the production of NO, whereas pretreatment of DOX inhibited the production of NO in response to CM in a dose dependent manner. The increased expressions of iNOS mRNA and protein by CM were completely blocked by DOX without affecting the iNOS mRNA stability. However, DOX activated nuclear factor-kB (NF-kB) in response to CM. Furthermore, the expression of inhibitor kB$\alpha$ was reduced by DOX in a dose dependent manner. Collectively, DOX inhibited the production of NO by DLD-1 cells, which is not linked to well known transcription factor, NF-kB. Therefore, further studies on the possible mechanisms of inhibitory effects of NO production by DOX would be worth pursuing.

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho;Yoon, Min-Ho;Park, Jung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.987-996
    • /
    • 2018
  • Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

Activation of Thromboxane Receptor Mediates Interleukin-8 Expression in Endothelial Cells (트롬복산 수용체 활성화가 인터루킨-8 발현에 미치는 영향)

  • Jeon, Hwa-Jin;Kim, Su-Ryun;Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Do-Won;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Thromboxane $A_2$ ($TXA_2$) is one of major proinflammatory mediators, plays an important role in the development of vascular inflammatory diseases. $TXA_2$ acting through the thromboxane receptor regulates multiple pathways and genes in a variety of cells. In this study, we report that the activation of thromboxane receptor with U46619 increases the interleukin-8 (IL-8) mRNA in vascular endothelial cells. We also demonstrated that U46619 produces the activations of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK), which is required for endothelial IL-8 production. And U46619 enhanced mRNA stability of IL-8 transcripts in endothelial cells. Moreover, inhibition of ERK1/2 or p38MAPK reduced monocyte adhesion to aortic endothelium stimulated by U46619. Therefore, these results suggest that activation of thromboxane receptor promotes the expression of IL-8 via ERK1/2 and p38MAPK activation in endothelial cells.