DOI QR코드

DOI QR Code

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Jung-Ho (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2018.03.08
  • Accepted : 2018.04.05
  • Published : 2018.06.28

Abstract

Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

Keywords

References

  1. Yamaguchi Y, Park JH, Inouye M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45: 61-79. https://doi.org/10.1146/annurev-genet-110410-132412
  2. Pandey DP, Gerdes K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33: 966-976. https://doi.org/10.1093/nar/gki201
  3. Page R, Peti W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12: 208-214. https://doi.org/10.1038/nchembio.2044
  4. Thisted T, Gerdes K. 1992. Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. J. Mol. Biol. 223: 41-54. https://doi.org/10.1016/0022-2836(92)90714-U
  5. Kawano M, Oshima T, Kasai H, Mori H. 2002. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol. Microbiol. 45: 333-349. https://doi.org/10.1046/j.1365-2958.2002.03042.x
  6. Kawano M. 2012. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR. RNA Biol. 9: 1520-1527. https://doi.org/10.4161/rna.22757
  7. Van Melderen L, Thi MH, Lecchi P, Gottesman S, Couturier M, Maurizi MR. 1996. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J. Biol. Chem. 271: 27730-27738. https://doi.org/10.1074/jbc.271.44.27730
  8. Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R. 2005. Toxinantitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30: 672-679. https://doi.org/10.1016/j.tibs.2005.10.004
  9. Brzozowska I, Zielenkiewicz U. 2013. Regulation of toxinantitoxin systems by proteolysis. Plasmid 70: 33-41. https://doi.org/10.1016/j.plasmid.2013.01.007
  10. Muthuramalingam M, White JC, Bourne CR. 2016. Toxinantitoxin modules are pliable switches activated by multiple protease pathways. Toxins (Basel) 8: E214. https://doi.org/10.3390/toxins8070214
  11. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12: 913-923. https://doi.org/10.1016/S1097-2765(03)00402-7
  12. Kamada K, Hanaoka F, Burley SK. 2003. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11: 875-884. https://doi.org/10.1016/S1097-2765(03)00097-2
  13. Yamaguchi Y, Park JH, Inouye M. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284: 28746-28753. https://doi.org/10.1074/jbc.M109.032904
  14. Hwang JY, Buskirk AR. 2016. A ribosome profil ing study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Res. 45: 327-336.
  15. Pedersen K, Zavialov A V, Pavlov M Y, Elf J, Gerdes K, Ehrenberg M. 2003. The bacterial toxin RelE displays codonspecific cleavage of mRNAs in the ribosomal A site. Cell 112: 131-140. https://doi.org/10.1016/S0092-8674(02)01248-5
  16. Galvani C, Terry J, Ishiguro EE. 2001. Purification of the RelB and RelE proteins of Escherichia coli: RelE binds to RelB and to ribosomes. J. Bacteriol. 183: 2700-2703. https://doi.org/10.1128/JB.183.8.2700-2703.2001
  17. Neubauer C, Gao YG, Andersen KR, Dunham CM, Kelley AC, Hentschel J, et al. 2009. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139: 1084-1095. https://doi.org/10.1016/j.cell.2009.11.015
  18. Zhang Y, Inouye M. 2009. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J. Biol. Chem. 284: 6627-6638. https://doi.org/10.1074/jbc.M808779200
  19. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186: 8172-8180. https://doi.org/10.1128/JB.186.24.8172-8180.2004
  20. Zhang Y, Yamaguchi Y, Inouye M. 2009. Characterization of YafO, an Escherichia coli toxin. J. Biol. Chem. 284: 25522-25531. https://doi.org/10.1074/jbc.M109.036624
  21. Feng S, Chen Y, Kamada K, Wang H, Tang K, Wang M, et al. 2013. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res. 41: 9549-9556. https://doi.org/10.1093/nar/gkt742
  22. Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J, Lupas AN, et al. 2007. prlF and yhaV encode a new toxinantitoxin system in Escherichia coli. J. Mol. Biol. 372: 894-905. https://doi.org/10.1016/j.jmb.2007.07.016
  23. Choi W, Yamaguchi Y, Lee JW, Jang KM, Inouye M, Kim SG, et al. 2017. Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett. 591: 1853-1861. https://doi.org/10.1002/1873-3468.12705
  24. Griffin MA, Davis JH, Strobel SA. 2013. Bacterial toxin RelE: a highly efficient ribonuclease with exquisite substrate specificity using atypical catalytic residues. Biochemistry 52: 8633-8642. https://doi.org/10.1021/bi401325c
  25. Shinohara M, Guo JX, Mori M, Nakashima T, Takagi H, Nishimoto E, et al. 2010. The structural mechanism of the inhibition of archaeal RelE toxin by its cognate RelB antitoxin. Biochem. Biophys. Res. Commun. 400: 346-351. https://doi.org/10.1016/j.bbrc.2010.08.061
  26. Baker KE, Mackie GA. 2003. Ectopic RNase E sites promote bypass of 5'-end-dependent mRNA decay in Escherichia coli. Mol. Microbiol. 47: 75-88.
  27. Park JH, Yoshizumi S, Yamaguchi Y, Wu KP, Inouye M. 2013. ACA-specific RNA sequence recognition is acquired via the loop 2 region of MazF mRNA interferase. Proteins 81: 874-883. https://doi.org/10.1002/prot.24246
  28. Simanshu DK, Yamaguchi Y, Park JH, Inouye M, Patel DJ. 2013. Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol. Cell 52: 447-458. https://doi.org/10.1016/j.molcel.2013.09.006
  29. Kamphuis MB, Bonvin AM, Monti MC, Lemonnier M, Munoz-Gomez A, van den H euvel RH, et al. 2006. Model for RNA binding and the catalytic site of the RNase Kid of the bacterial parD toxin-antitoxin system. J. Mol. Biol. 357: 115-126. https://doi.org/10.1016/j.jmb.2005.12.033
  30. Boggild A, Sofos N, Andersen KR, Feddersen A, Easter AD, Passmore LA, et al. 2012. The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20: 1641-1648. https://doi.org/10.1016/j.str.2012.08.017
  31. Kamada K, Hanaoka F. 2005. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol. Cell 19: 497-509. https://doi.org/10.1016/j.molcel.2005.07.004
  32. Schureck MA, Dunkle JA, Maehigashi T, Miles SJ, Dunham CM. 2015. Defining the mRNA recognition signature of a bacterial toxin protein. Proc. Natl. Acad. Sci. USA 112: 13862-13867. https://doi.org/10.1073/pnas.1512959112
  33. Schureck MA, Repack A, Miles SJ, Marquez J, Dunham CM. 2016. Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res. 44: 7944-7953. https://doi.org/10.1093/nar/gkw598
  34. Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss- PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. https://doi.org/10.1002/elps.1150181505
  35. Herraez A. 2006. Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ 34: 255-261. https://doi.org/10.1002/bmb.2006.494034042644
  36. Brown BL, Grigoriu S, Kim Y, Arruda JM, Davenport A, Wood TK, et al. 2009. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5: e1000706. https://doi.org/10.1371/journal.ppat.1000706
  37. Selkoe DJ. 2003. Folding proteins in fatal ways. Nature 426: 900-904. https://doi.org/10.1038/nature02264
  38. Park JH, Yamaguchi Y, Inouye M. 2012. Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases. Appl. Environ. Microbiol. 78: 3794-3799. https://doi.org/10.1128/AEM.00364-12
  39. Chandrasegaran S, Carroll D. 2016. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428: 963-989. https://doi.org/10.1016/j.jmb.2015.10.014

Cited by

  1. First report on the characterization of pathogenic Rahnella aquatilis KCL‐5 from crucian carp: Revealed by genomic and proteomic analyses vol.43, pp.8, 2020, https://doi.org/10.1111/jfd.13200