References
- Yamaguchi Y, Park JH, Inouye M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45: 61-79. https://doi.org/10.1146/annurev-genet-110410-132412
- Pandey DP, Gerdes K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33: 966-976. https://doi.org/10.1093/nar/gki201
- Page R, Peti W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12: 208-214. https://doi.org/10.1038/nchembio.2044
- Thisted T, Gerdes K. 1992. Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. J. Mol. Biol. 223: 41-54. https://doi.org/10.1016/0022-2836(92)90714-U
- Kawano M, Oshima T, Kasai H, Mori H. 2002. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol. Microbiol. 45: 333-349. https://doi.org/10.1046/j.1365-2958.2002.03042.x
- Kawano M. 2012. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR. RNA Biol. 9: 1520-1527. https://doi.org/10.4161/rna.22757
- Van Melderen L, Thi MH, Lecchi P, Gottesman S, Couturier M, Maurizi MR. 1996. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J. Biol. Chem. 271: 27730-27738. https://doi.org/10.1074/jbc.271.44.27730
- Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R. 2005. Toxinantitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30: 672-679. https://doi.org/10.1016/j.tibs.2005.10.004
- Brzozowska I, Zielenkiewicz U. 2013. Regulation of toxinantitoxin systems by proteolysis. Plasmid 70: 33-41. https://doi.org/10.1016/j.plasmid.2013.01.007
- Muthuramalingam M, White JC, Bourne CR. 2016. Toxinantitoxin modules are pliable switches activated by multiple protease pathways. Toxins (Basel) 8: E214. https://doi.org/10.3390/toxins8070214
- Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12: 913-923. https://doi.org/10.1016/S1097-2765(03)00402-7
- Kamada K, Hanaoka F, Burley SK. 2003. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11: 875-884. https://doi.org/10.1016/S1097-2765(03)00097-2
- Yamaguchi Y, Park JH, Inouye M. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284: 28746-28753. https://doi.org/10.1074/jbc.M109.032904
- Hwang JY, Buskirk AR. 2016. A ribosome profil ing study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Res. 45: 327-336.
- Pedersen K, Zavialov A V, Pavlov M Y, Elf J, Gerdes K, Ehrenberg M. 2003. The bacterial toxin RelE displays codonspecific cleavage of mRNAs in the ribosomal A site. Cell 112: 131-140. https://doi.org/10.1016/S0092-8674(02)01248-5
- Galvani C, Terry J, Ishiguro EE. 2001. Purification of the RelB and RelE proteins of Escherichia coli: RelE binds to RelB and to ribosomes. J. Bacteriol. 183: 2700-2703. https://doi.org/10.1128/JB.183.8.2700-2703.2001
- Neubauer C, Gao YG, Andersen KR, Dunham CM, Kelley AC, Hentschel J, et al. 2009. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139: 1084-1095. https://doi.org/10.1016/j.cell.2009.11.015
- Zhang Y, Inouye M. 2009. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J. Biol. Chem. 284: 6627-6638. https://doi.org/10.1074/jbc.M808779200
- Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186: 8172-8180. https://doi.org/10.1128/JB.186.24.8172-8180.2004
- Zhang Y, Yamaguchi Y, Inouye M. 2009. Characterization of YafO, an Escherichia coli toxin. J. Biol. Chem. 284: 25522-25531. https://doi.org/10.1074/jbc.M109.036624
- Feng S, Chen Y, Kamada K, Wang H, Tang K, Wang M, et al. 2013. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res. 41: 9549-9556. https://doi.org/10.1093/nar/gkt742
- Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J, Lupas AN, et al. 2007. prlF and yhaV encode a new toxinantitoxin system in Escherichia coli. J. Mol. Biol. 372: 894-905. https://doi.org/10.1016/j.jmb.2007.07.016
- Choi W, Yamaguchi Y, Lee JW, Jang KM, Inouye M, Kim SG, et al. 2017. Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett. 591: 1853-1861. https://doi.org/10.1002/1873-3468.12705
- Griffin MA, Davis JH, Strobel SA. 2013. Bacterial toxin RelE: a highly efficient ribonuclease with exquisite substrate specificity using atypical catalytic residues. Biochemistry 52: 8633-8642. https://doi.org/10.1021/bi401325c
- Shinohara M, Guo JX, Mori M, Nakashima T, Takagi H, Nishimoto E, et al. 2010. The structural mechanism of the inhibition of archaeal RelE toxin by its cognate RelB antitoxin. Biochem. Biophys. Res. Commun. 400: 346-351. https://doi.org/10.1016/j.bbrc.2010.08.061
- Baker KE, Mackie GA. 2003. Ectopic RNase E sites promote bypass of 5'-end-dependent mRNA decay in Escherichia coli. Mol. Microbiol. 47: 75-88.
- Park JH, Yoshizumi S, Yamaguchi Y, Wu KP, Inouye M. 2013. ACA-specific RNA sequence recognition is acquired via the loop 2 region of MazF mRNA interferase. Proteins 81: 874-883. https://doi.org/10.1002/prot.24246
- Simanshu DK, Yamaguchi Y, Park JH, Inouye M, Patel DJ. 2013. Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis. Mol. Cell 52: 447-458. https://doi.org/10.1016/j.molcel.2013.09.006
- Kamphuis MB, Bonvin AM, Monti MC, Lemonnier M, Munoz-Gomez A, van den H euvel RH, et al. 2006. Model for RNA binding and the catalytic site of the RNase Kid of the bacterial parD toxin-antitoxin system. J. Mol. Biol. 357: 115-126. https://doi.org/10.1016/j.jmb.2005.12.033
- Boggild A, Sofos N, Andersen KR, Feddersen A, Easter AD, Passmore LA, et al. 2012. The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20: 1641-1648. https://doi.org/10.1016/j.str.2012.08.017
- Kamada K, Hanaoka F. 2005. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol. Cell 19: 497-509. https://doi.org/10.1016/j.molcel.2005.07.004
- Schureck MA, Dunkle JA, Maehigashi T, Miles SJ, Dunham CM. 2015. Defining the mRNA recognition signature of a bacterial toxin protein. Proc. Natl. Acad. Sci. USA 112: 13862-13867. https://doi.org/10.1073/pnas.1512959112
- Schureck MA, Repack A, Miles SJ, Marquez J, Dunham CM. 2016. Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res. 44: 7944-7953. https://doi.org/10.1093/nar/gkw598
- Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss- PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. https://doi.org/10.1002/elps.1150181505
- Herraez A. 2006. Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ 34: 255-261. https://doi.org/10.1002/bmb.2006.494034042644
- Brown BL, Grigoriu S, Kim Y, Arruda JM, Davenport A, Wood TK, et al. 2009. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5: e1000706. https://doi.org/10.1371/journal.ppat.1000706
- Selkoe DJ. 2003. Folding proteins in fatal ways. Nature 426: 900-904. https://doi.org/10.1038/nature02264
- Park JH, Yamaguchi Y, Inouye M. 2012. Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases. Appl. Environ. Microbiol. 78: 3794-3799. https://doi.org/10.1128/AEM.00364-12
- Chandrasegaran S, Carroll D. 2016. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428: 963-989. https://doi.org/10.1016/j.jmb.2015.10.014
Cited by
- First report on the characterization of pathogenic Rahnella aquatilis KCL‐5 from crucian carp: Revealed by genomic and proteomic analyses vol.43, pp.8, 2020, https://doi.org/10.1111/jfd.13200