• Title/Summary/Keyword: RNA Stability

Search Result 205, Processing Time 0.028 seconds

DNA Sequencing Analysis Technique by Using Solid-State Nanopore (고체상 나노구멍을 이용한 DNA 염기서열 분석기술)

  • Kim, Tae-Heon;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.359-366
    • /
    • 2012
  • Nanopore DNA sequencing is an emerging and promising technique that can potentially realize the goal of a low-cost and high-throughput method for analyzing human genome. Especially, solid-state nanopores have relatively high mechanical stability, simple surface modification, and facile fabrication process without the need for labeling or amplification of PCR (polymerized chain reaction) in DNA sequencing. For these advantages of solid-sate nanopores, the use of solid-state nanopores has been extensively considered for developing a next generation DNA sequencing technology. Solid-state nanopore sequencing technique can determine and count charged molecules such as single-stranded DNA, double-stranded DNA, or RNA when they are driven to pass through a membrane nanopore between two electrolytes of cis-trans chambers with applied bias voltage by measuring the ionic current which varies due to the existence of the charged particles in the nanopore. Recently, many researchers have suggested that nanopore-based sensors can be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000.

Expression Profile of Heat Shock Protein Gene Transcripts (HSP70 and HSP90) in the Nerve Ganglia of Pacific abalone, Haliotis discus hannai Exposed to Thermal Stress

  • Sukhan, Zahid Parvez;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • Heat shock proteins (HSPs) are highly conserved cellular proteins that contribute to adaptive responses of organisms to a variety of stressors. In response to stressors, cellular levels of HSPs are increased and play critical roles in protein stability, folding and molecular trafficking. The mRNA expression pattern of two well-known heat shock protein transcripts, HSP70 and HSP90 were studied in two tissues of nerve ganglia, cerebral ganglion and pleuropedal ganglion of Pacific abalone (Haliotis discus hannai). It was observed that both HSP70 and HSP90 transcripts were upregulated under heat stress in both ganglion tissues. Expression level of HSP70 was found higher than HSP90 in both ganglia whereas cerebral ganglion showed higher expression than pleuropedal ganglion. The HSP70 and HSP90 showed higher expression at Day-1 after exposed to heat stress, later decreased at Day-3 and Day-7 onwards. The present result suggested that HSP70 and HSP90 synthesize in nerve ganglion tissues and may provide efficient protection from stress.

Isolation of a Lactococcus lactis Strain Producing Anti-staphylococcal Bacteriocin

  • Yang, Jung-Mo;Moon, Gi-Seong
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1315-1321
    • /
    • 2018
  • Bacteriocin is ribosomally synthesized by bacteria and inhibits closely related species. In this study we aimed at isolating lactic acid bacteria producing bacteriocin presenting anti-staphylococcal activity. A Lactococcus lactis strain was isolated from kimchi for the purpose and identified by 16S rRNA gene sequencing. As preliminary tests, optimal culture conditions, stabilities against heat, solvents, and enzymes treatments, and type of action (bacteriostatic or bactericidal) of the bacteriocin were investigated. The optimal culture conditions for production of the bacteriocin were MRS broth medium and $25^{\circ}C$ and $30^{\circ}C$ culture temperatures. The bacteriocin was acidic and the activity was abolished by a protease treatment. Its stability was maintained at $100^{\circ}C$ for 15 min and under treatments of various organic solvents such as methanol, ethanol, acetone, acetonitrile, and chloroform. Finally, the bacteriocin showed bactericidal action against Staphylococcus aureus where 200 AU/mL of the bacteriocin decreased the viable cell count (CFU/mL) of S. aureus by 2.5 log scale, compared with a control (no bacteriocin added) after 4-h incubation.

Improvement of Bacilysin Production in Bacillus subtilis by CRISPR/Cas9-Mediated Editing of the 5'-Untranslated Region of the bac Operon

  • Hadeel Waleed Abdulmalek;Ayten Yazgan-Karatas
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.410-418
    • /
    • 2023
  • Bacilysin is a dipeptide antibiotic composed of L-alanine and L-anticapsin produced by certain strains of Bacillus subtilis. Bacilysin is gaining increasing attention in industrial agriculture and pharmaceutical industries due to its potent antagonistic effects on various bacterial, fungal, and algal pathogens. However, its use in industrial applications is hindered by its low production in the native producer. The biosynthesis of bacilysin is mainly based on the bacABCDEF operon. Examination of the sequence surrounding the upstream of the bac operon did not reveal a clear, strong ribosome binding site (RBS). Therefore, in this study, we aimed to investigate the impact of RBS as a potential route to improve bacilysin production. For this, the 5' untranslated region (5'UTR) of the bac operon was edited using the CRISPR/Cas9 approach by introducing a strong ribosome binding sequence carrying the canonical Shine-Dalgarno sequence (TAAGGAGG) with an 8 nt spacing from the AUG start codon. Strong RBS substitution resulted in a 2.87-fold increase in bacilysin production without affecting growth. Strong RBS substitution also improved the mRNA stability of the bac operon. All these data revealed that extensive RBS engineering is a promising key option for enhancing bacilysin production in its native producers.

Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells

  • Hyunji Choi;Moonkyung Kang;Kee-Ho Lee;Yeon-Soo Kim
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.612-617
    • /
    • 2023
  • Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells.

Selection of Reference Genes for Gene Expression Studies in Porcine Whole Blood and Peripheral Blood Mononuclear Cells under Polyinosinic:Polycytidylic Acid Stimulation

  • Wang, Jiying;Wang, Yanping;Wang, Huaizhong;Hao, Xiaojing;Wu, Ying;Guo, Jianfeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.471-478
    • /
    • 2014
  • Investigating gene expression of immune cells of whole blood or peripheral blood mononuclear cells (PBMC) under polyinosinic:polycytidylic acid (poly I:C) stimulation is valuable for understanding the immune response of organism to RNA viruses. Quantitative real-time PCR (qRT-PCR) is a standard method for quantification of gene expression studies. However, the reliability of qRT-PCR data critically depends on proper selection of reference genes. In the study, using two different analysis programs, geNorm and NormFinder, we systematically evaluated the gene expression stability of six candidate reference genes (GAPDH, ACTB, B2M, RPL4, TBP, and PPIA) in samples of whole blood and PBMC with or without poly I:C stimulation. Generally, the six candidate genes performed a similar trend of expression stability in the samples of whole blood and PBMC, but more stably expressed in whole blood than in PBMC. geNorm ranked B2M and PPIA as the best combination for gene expression normalization, while according to NormFinder, TBP was ranked as the most stable reference gene, followed by B2M and PPIA. Comprehensively considering the results from the two programs, we recommended using the geometric mean of the three genes, TBP, PPIA and B2M, to normalize the gene expression of whole blood and PBMC with poly I:C stimulation. Our study is the first detailed survey of the gene expression stability in whole blood and PBMC with or without poly I:C stimulation and should be helpful for investigating the molecular mechanism involved in porcine whole blood and PBMC in response to poly I:C stimulation.

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis (Poly-N-acetyllactosamine (poly-LacNAc) 합성에 관여하는 돼지 β-1,3-N-acetylglucosaminyltransferase I (pB3GNT1) 유전자 동정)

  • Kim, Ji-Youn;Hwang, Hwan-Jin;Chung, Hak-Jae;Hochi, Shinichi;Park, Mi-Ryung;Byun, Sung June;Oh, Keon Bong;Yang, Hyeon;Kim, Kyung-Woon
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.389-397
    • /
    • 2018
  • The structure of glycan residues attached to glycoproteins can influence the biological activity, stability, and safety of pharmaceutical proteins delivered from transgenic pig milk. The production of therapeutic glycoprotein in transgenic livestock animals is limited, as the glycosylation of mammary gland cells and the production of glycoproteins with the desired homogeneous glycoform remain a challenge. The ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) gene is an important enzyme that attaches N-acetylglucosamine (GlcNAc) to galactose (Gal) residues for protein glycosylation; however, there is limited information about pig glycosyltransferases. Therefore, we cloned the pig B3GNT1 (pB3GNT1) and investigated its functional properties that could attach N-acetylglucosamine to galactose residue. Using several different primers, a partial pB3GNT1 mRNA sequence containing the full open reading frame (ORF) was isolated from liver tissue. The ORF of pB3GNT1 contained 1,248 nucleotides and encoded 415 amino acid residues. Organ-dependent expression of the pB3GNT1 gene was confirmed in various organs from adult and juvenile pigs. The pB3GNT1 mRNA expression level was high in the muscles of the heart and small intestine but was lower in the lungs. For functional characterization of pB3GNT1, we established a stable expression of the pB3GNT1 gene in the porcine kidney cell line (PK-15). As a result, it was suggested that the glycosylation pattern of pB3GNT1 expression in PK-15 cells did not affect the total sialic acid level but increased the poly N-acetyllactosamine level. The results of this study can be used to produce glycoproteins with improved properties and therapeutic potential for the generation of desired glycosylation using transgenic pigs as bioreactors.

Inhibition of Inducible Nitric Oxide Synthase Expression by YS 49, a Synthetic Isoquinoline Alkaloid, in ROS 17/2.8 Cells Activated with $TNF-{\alpha},\;IFN-{\gamma}$ and LPS

  • Kang, Young-Jin;Kang, Sun-Young;Lee, Young-Soo;Park, Min-Kyu;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;YunChoi, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.273-280
    • /
    • 2004
  • Nitric oxide (NO) has been suggested to act as a mediator of cytokine-induced effects of turn over of bone. Activation of the inducible nitric oxide synthase (iNOS) by inflammation has been related with apoptotic cell death in osteoblast. YS 49, a synthetic isoquinoline alkaloid, inhibits NO production in macrophages activated with cytokines. In the present study, we investigated the molecular mechanism of YS 49 to inhibit iNOS expression in ROS 17/2.8 cells, which were activated with combined treatment of inflammatory cytokines $(TNF-{\alpha},\;IFN-{\gamma})$ and lipopolysaccharide (LPS). Results indicated that YS 49 concentration-dependently reduced iNOS mRNA and protein expression, as evidenced by Northern and Western blot analysis, respectively. The underlying mechanism by which YS 49 suppressed iNOS expression was not to affect iNOS mRNA stability but to inhibit activation and translocation of $NF-_kB$ by preventing the degradation of its inhibitory protein $I_kB_{\alpha}$. As expected, YS 49 prevented NO-induced apoptotic cell death by sodium nitroprusside. Taken together, it is concluded that YS 49 inhibits iNOS expression by interfering with degradation of phosphorylated inhibitory $_kB_{\alpha}\;(p-I_kB_{\alpha})$. These actions may be beneficial for the treatment of inflammation of the joint, such as rheumatoid arthritis.

Isolation and Characterization of Acid Protease Produced by Staphylococcus sp. CB2-3 from Digestive Organ of Harmonia axyridis (무당벌레 소화기관으로부터 산성 단백질 분해효소를 생산하는 Staphylococcus sp. CB2-3의 분리 및 특성)

  • Kim, Se-Jong;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Six protein-degrading bacteria were isolated from digestive organ of Harmonia axyridis. These isolates were categorized as Staphylococcus sciuri subsp. sciuri (3 strains), Bacillus subtilis (1 strain), and Bacillus thuringiensis (2 strains) by 16S rRNA gene sequence analysis. The Staphylococcus sp. CB2-3 was selected as a protease-producing bacterium which showed the highest protease activity of 58.5 U/ml at the pH 5.0 medium. The optimal pH and temperature of protease activity were pH 5.0 and $40^{\circ}C$, respectively. This acid protease had a relatively high stability of 80% between $30-50^{\circ}C$ at broad temperature range. The opimal medium compositions of carbon, nitrogen and mineral source for cell growth and protease activity were investigated. When sorbitol (0.5%) was used as carbon source, enzyme activity was increased about 2 times than that of the basal medium. When skim milk (0.5%) was used as nitrogen source, activity was increased about 2.5 times than that of the control. Cell growth and enzyme activity were increased by mineral source such as KCl, $K_2HPO_4$, $FeSO_4$, but was completely inhibited by divalent ions such as $Co^{2+}$, $Zn^{2+}$, $Mn^{2+}$, $Cu^{2+}$.