DOI QR코드

DOI QR Code

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation) ;
  • Seok, Ji Yoon (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation) ;
  • Choi, Young Sun (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation) ;
  • Lee, Sung Hee (College of Nursing, Kyungpook National University) ;
  • Bae, Jong-Sup (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation) ;
  • Lee, You Mie (Research Institute of Pharmaceutical Sciences, College of Pharmacy, National Basic Research Laboratory of Vascular Homeostasis Regulation)
  • Received : 2015.02.03
  • Accepted : 2015.03.17
  • Published : 2015.06.30

Abstract

Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Keywords

References

  1. Abedi, H., and Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Bio. Chem. 272, 15442-15451. https://doi.org/10.1074/jbc.272.24.15442
  2. Bardos, J.I. and Ashcroft, J. (2005). Negative and positive regulation of HIF-1: a complex network. Biochimica et Biophysica Acta 1755, 107-120.
  3. Cabrita, M.A., Jones, L.M., Quizi, J.L., Sabourin, L.A., Makay, B.C., and Addison, C.L. (2011). Focal adhesion kinase inhibitors are potent anti-angiogenic agents. Mol. Oncol. 5, 517-526. https://doi.org/10.1016/j.molonc.2011.10.004
  4. Carroll, V.A., and Ashcroft, M. (2008). Role of hypoxia-inducible factor (HIF$1\alpha$ versus HIF-$2\alpha$ in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von hippel-lindau function: implications for targeting the HIF pathway. Cancer Res. 15, 6264-6270.
  5. Chang, Y., Zhang, X., Horton, J.R., Upadhyay, A.K., Spannhoff, A., Liu, J., Snyder, J.P., Bedford, M.T., and Cheng, X. (2009). Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16. 312-317. https://doi.org/10.1038/nsmb.1560
  6. Chen, M.W., Hua, K.T., Kao, H.J., Chi, C.C., Wei, L.H., Johansson, G., Shiah, S.G., Chen, P.S., Jeon, Y.M, Cheng, T.Y., et al. (2010). H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res. 70, 7830-7840. https://doi.org/10.1158/0008-5472.CAN-10-0833
  7. Choi, J.H., Nguyen, M.P., Lee, D., Oh, G.T., and Lee, Y.M. (2014). Hypoxia-induced endothelial progenitor cell function is blunted in angiotensinogen knockout mice. Mol. Cells 37, 487-496. https://doi.org/10.14348/molcells.2014.0119
  8. Ellis, L., Hammers, H., and Pili, R. (2009). Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett. 280, 145-153. https://doi.org/10.1016/j.canlet.2008.11.012
  9. Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604-4613. https://doi.org/10.1128/MCB.16.9.4604
  10. German, A.E., Mammoto, T., Jiang, E., Ingber, D.E., and Mammoto, A. (2014). Paxillin controls endothelial cell migration and tumor angiogenesis by altering neuropilin 2 expression. J. Cell Sci. 127, 1672-1683. https://doi.org/10.1242/jcs.132316
  11. Hatzimichael, E., Dasoula, A., Shah, R., Syed, N., Papoudou-Bai, A., Coley, H.M., Dranitasris, G., Bourantas, K.L., Stebbing, J., and Crook, T. (2010). The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia. Eur. J. Haematol. 84, 47-51. https://doi.org/10.1111/j.1600-0609.2009.01344.x
  12. Karagiannis, E.D., and Popel, A.S. (2006). Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J. Theor. Biol. 238, 124-145. https://doi.org/10.1016/j.jtbi.2005.05.020
  13. Ke, Q., and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharm. 70, 1469-1480. https://doi.org/10.1124/mol.106.027029
  14. Kim, Y., Kim, Y.S., Kim, D.E., Lee, J.S., Song, J.H., Kim, H.G., Cho, D.H., Jeong, S.Y., Jin, D.H., Jang, S.J. et al. (2013). BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy 9, 2126-2139. https://doi.org/10.4161/auto.26308
  15. Kiselyov, A., Balakin, K.V., and Tkachenko, S.E. (2007). VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Pepert. Pion. Investig. Drugs 16, 83-107.
  16. Kuljaca, S., Liu, T., Tee, A.E.L., Haber, M. Norris, Dwarte, G.M., and Marshall, M.D.T. (2007). Enhancing the anti-angiogenic action of histone deacetylase inhibitors. Mol. Cancer 6, 1-11.
  17. Law, A.Y., Lai, K.P., Ip, C.K., Wong, A.S., Wagner, G.F., and Wong, C.K. (2008). Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp. Cell Res. 314, 1823-1830. https://doi.org/10.1016/j.yexcr.2008.03.001
  18. Lee, J.S., Kim, Y., Kim, I.S., Kim, B., Choi, H.J., Lee, J.M., Shin, H.J., Kim, J.H., Kim, J.Y., Seo, S.B., et al. (2010). Negative regulation of hypoxic responses via induced reptin methylation. Mol. Cell 39, 71-85. https://doi.org/10.1016/j.molcel.2010.06.008
  19. Lee, J.S., Kim, Y., Bhin, J., Shin, H.J., Nam, H.J., Lee, S.H., Yoon, J.B., Binda, O., Gozani, O., Hwang, D., et al. (2011). Hypoxiainduced methylation of a pontin chromatin remodeling factor. Proc. Natl. Acad. Sci. USA 108, 13510-13515. https://doi.org/10.1073/pnas.1106106108
  20. Lu, C., Han, H.D., Mangala, L.S., Ali-Fehmi, R., Newton, C.S., Ozbun, L., Armaiz-Pena, G.N., Hu, W., Stone, R.L., Munkarah, A., et al. (2010). Regulation of tumor angiogenesis by EZH2. Cancer Cell 18, 185-197. https://doi.org/10.1016/j.ccr.2010.06.016
  21. Lu, Z., Tian, Y. Salwen, H.R., Chlenski, A., Godley, L.A., Raj, J.U., and Yang, Q. (2013). Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anti-Cancer Drugs 24, 484-493. https://doi.org/10.1097/CAD.0b013e32835ffdbb
  22. Ma, N. (2011). HIF-1 is the commander of gateways to cancer. Nagy J. Cancer Sci. Ther. 3, 35-40.
  23. Mamahon, G. (2000). VEGF receptor signaling in tumor angiogenesis. Oncologist 5, 3-10. https://doi.org/10.1634/theoncologist.5-suppl_1-3
  24. Nguyen, M.P., Lee, S., and Lee, Y.M. (2013). Epigenetic regulation of hypoxia inducible factor in diseases and therapeutics. Arch. Pharm. Res. 36, 252-263. https://doi.org/10.1007/s12272-013-0058-x
  25. Rundhaug, J.E. (2003). Matrix metalloproteinases, angiogenesis, and cancer. Clin. Cancer Res. 9, 551-554.
  26. Schaller, M.D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-6472. https://doi.org/10.1038/sj.onc.1204786
  27. Sigalotti, L., Fratta, E., Coral, S., and Maio, M. (2014). Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol. Ther. 142, 339-350. https://doi.org/10.1016/j.pharmthera.2013.12.015
  28. Stroka, D.M., Burkhardt, T., Desbaillets, I., Wenger, R.H., Neil, D.A.H., Bauer, C., Gassmann, M., and Caninas, D. (2001). HIF- 1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 15, 2445-2453. https://doi.org/10.1096/fj.01-0125com
  29. Tavora, B., Batista, S., Reynolds, L.E., Jadeja, S., Robinson, S., Kostourou, V., Hart, I., Fruttiger, M., Parsons, M., and Hodivala-Dilke, K.M. (2010). Endothelial FAK is required for tumour angiogenesis. EMBO Mol. Med. 2, 516-52840. https://doi.org/10.1002/emmm.201000106
  30. Tong, Z., Qing, Y., Wu, Y., Hu, X., Jiang, L., and Wu, X. (2014). Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol. Appl. Pharmacol. 281, 166-173. https://doi.org/10.1016/j.taap.2014.07.026
  31. Varier, R.A., and Timmers, H.T.M. (2011). Histone lysine methylation and demethylation pathways in cancer. Biochim. Biophys. Acta 1815, 75-89.
  32. Wang, L., Zhang, Z.G., Zhang, R.L., Gregg, S.R., Hozeska-Solgot, A., Tourneau, Y.L., Wang, Y., and Chopp, M. (2006). Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin- activated endothelial cells promote neural progenitor cell migration. N. Neurosci. 26, 5996-6003. https://doi.org/10.1523/JNEUROSCI.5380-05.2006
  33. Watson, J.A., Watson, C.J., McCann, A., and Baugh, J. (2010). Epigenetics, the epicenter of the hypoxic response. Epigenetics 5, 293-296. https://doi.org/10.4161/epi.5.4.11684
  34. Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541-5552. https://doi.org/10.1038/sj.onc.1210620
  35. Yee, K.M., Spivak-Kroizman, T.R. and Powis, G. (2008). HIF-1 regulation: not so easy come, easy go. Trends Biochem. Sci. 33, 526-534. https://doi.org/10.1016/j.tibs.2008.08.002

Cited by

  1. Macrophages Aggravate Hypoxia-Induced Cardiac Microvascular Endothelial Cell Injury via Peroxynitrite: Protection by Tongxinluo vol.22, pp.2-6, 2015, https://doi.org/10.3109/15419061.2016.1155565
  2. G9a inhibits MEF2C activity to control sarcomere assembly vol.6, pp.1, 2016, https://doi.org/10.1038/srep34163
  3. The expanding role of the Ehmt2/G9a complex in neurodevelopment vol.4, pp.1, 2017, https://doi.org/10.1080/23262133.2017.1316888
  4. Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-α protein stability and activity vol.75, pp.6, 2018, https://doi.org/10.1007/s00018-017-2684-9
  5. The Methylation Status of the Epigenome: Its Emerging Role in the Regulation of Tumor Angiogenesis and Tumor Growth, and Potential for Drug Targeting vol.10, pp.8, 2018, https://doi.org/10.3390/cancers10080268
  6. Pharmacologic Targeting of Hypoxia-Inducible Factors vol.59, pp.1, 2019, https://doi.org/10.1146/annurev-pharmtox-010818-021637
  7. Out of sight, out of mind? Germ cells and the potential impacts of epigenomic drugs vol.7, pp.None, 2015, https://doi.org/10.12688/f1000research.15935.1
  8. BIX-01294 sensitizes renal cancer Caki cells to TRAIL-induced apoptosis through downregulation of survivin expression and upregulation of DR5 expression vol.4, pp.None, 2015, https://doi.org/10.1038/s41420-018-0035-8
  9. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy vol.14, pp.7, 2019, https://doi.org/10.1080/17460441.2019.1613370
  10. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect vol.12, pp.None, 2015, https://doi.org/10.2147/cmar.s258196
  11. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation vol.39, pp.1, 2015, https://doi.org/10.1186/s13046-020-01733-5
  12. Novel cyclometalated iridium(iii) phosphine-imine (P^N) complexes: highly efficient anticancer and anti-lung metastasis agents in vivo vol.7, pp.5, 2020, https://doi.org/10.1039/c9qi01492f
  13. Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis vol.99, pp.12, 2015, https://doi.org/10.1177/0022034520932491
  14. Histone methylation and vascular biology vol.12, pp.None, 2020, https://doi.org/10.1186/s13148-020-00826-4
  15. Ways into Understanding HIF Inhibition vol.13, pp.1, 2015, https://doi.org/10.3390/cancers13010159
  16. Histone Methyltransferase G9a-Promoted Progression of Hepatocellular Carcinoma Is Targeted by Liver-Specific Hsa-miR-122 vol.13, pp.10, 2021, https://doi.org/10.3390/cancers13102376