DOI QR코드

DOI QR Code

Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis

Poly-N-acetyllactosamine (poly-LacNAc) 합성에 관여하는 돼지 β-1,3-N-acetylglucosaminyltransferase I (pB3GNT1) 유전자 동정

  • Kim, Ji-Youn (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Hwang, Hwan-Jin (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Chung, Hak-Jae (Swine Science Division, National Institute of Animal Science, Rural Development Administration) ;
  • Hochi, Shinichi (Faculty of Textile Science and Technology, Shinshu University) ;
  • Park, Mi-Ryung (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Byun, Sung June (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Oh, Keon Bong (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Yang, Hyeon (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Kyung-Woon (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
  • 김지윤 (국립축산과학원 동물바이오공학과) ;
  • 황환진 (국립축산과학원 동물바이오공학과) ;
  • 정학재 (국립축산과학원 양돈과) ;
  • 신이치 호치 (신슈대학) ;
  • 박미령 (국립축산과학원 동물바이오공학과) ;
  • 변승준 (국립축산과학원 동물바이오공학과) ;
  • 오건봉 (국립축산과학원 동물바이오공학과) ;
  • 양현 (국립축산과학원 동물바이오공학과) ;
  • 김경운 (국립축산과학원 동물바이오공학과)
  • Received : 2017.10.16
  • Accepted : 2018.03.09
  • Published : 2018.04.30

Abstract

The structure of glycan residues attached to glycoproteins can influence the biological activity, stability, and safety of pharmaceutical proteins delivered from transgenic pig milk. The production of therapeutic glycoprotein in transgenic livestock animals is limited, as the glycosylation of mammary gland cells and the production of glycoproteins with the desired homogeneous glycoform remain a challenge. The ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) gene is an important enzyme that attaches N-acetylglucosamine (GlcNAc) to galactose (Gal) residues for protein glycosylation; however, there is limited information about pig glycosyltransferases. Therefore, we cloned the pig B3GNT1 (pB3GNT1) and investigated its functional properties that could attach N-acetylglucosamine to galactose residue. Using several different primers, a partial pB3GNT1 mRNA sequence containing the full open reading frame (ORF) was isolated from liver tissue. The ORF of pB3GNT1 contained 1,248 nucleotides and encoded 415 amino acid residues. Organ-dependent expression of the pB3GNT1 gene was confirmed in various organs from adult and juvenile pigs. The pB3GNT1 mRNA expression level was high in the muscles of the heart and small intestine but was lower in the lungs. For functional characterization of pB3GNT1, we established a stable expression of the pB3GNT1 gene in the porcine kidney cell line (PK-15). As a result, it was suggested that the glycosylation pattern of pB3GNT1 expression in PK-15 cells did not affect the total sialic acid level but increased the poly N-acetyllactosamine level. The results of this study can be used to produce glycoproteins with improved properties and therapeutic potential for the generation of desired glycosylation using transgenic pigs as bioreactors.

당 단백질에 붙어 있는 당사슬 구조는 형질전환 돼지 유즙으로 분비되는 의약용 단백질의 생물학적 활성, 안정성 그리고 안전성에 영향을 줄 수 있다. 형질전환 동물을 이용한 치료용 당 단백질 생산은 유선 세포에서 이루어지는 당사슬 부가능력에 의해 제한되며, 균일한 당사슬 형태를 가지는 당 단백질 생산은 도전 과제로 남아있다. ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) 유전자는 N-아세틸글루코사민에 갈락토오스 잔기를 부착시키는 단백질 당화기작에 중요한 효소이지만, 돼지 당 전이효소에 대한 정보는 매우 제한적이다. 따라서, 돼지 B3GNT1 (pB3GNT1) 유전자를 클로닝하고 N-아세틸글루코사민에 갈락토오스 잔기를 부착시키는 기능적 특성을 조사하였다. 몇가지 다른 프라이머를 사용하여 전체 전사영역(ORF)을 함유하는 부분적인 pB3GNT1 mRNA 염기서열을 간 조직으로부터 분리하였다. 클로닝 된 pB3GNT1의 ORF는 1,248개의 뉴클레오티드를 가지며, 415개 아미노산 잔기로 구성되어 있었다. pB3GNT1 유전자의 장기별 발현특성은 성돈 및 자돈의 여러 기관에서 분석하였다. pB3GNT1 mRNA 발현 수준은 심장, 소장 보다는 근육에서 높았지만 폐에서는 낮았다. pB3GNT1의 기능적 특성 분석을 위해 돼지 신장 세포주(PK-15)에서 pB3GNT1 유전자의 안정적인 발현을 확립하였다. 그 결과, PK-15 세포에서 pB3GNT1 발현에 의한 당화 패턴은 총 시알산 증가에는 영향을 미치지 않지만, poly-N-아세틸글루코사민은 증가하는 것으로 나타났다. 본 연구는 생물반응기로 형질전환 돼지를 이용할 때 희망하는 당사슬을 부가하여 치료 가능성을 높이며 개선된 활성을 나타내는 당단백질 생산에 도움이 될 것이다.

Keywords

References

  1. Bao, X., Kobayashi, M., Hatakeyama, S., Angata, K., Gullberg, D., Nakayama, J., Fukuda, M. N. and Fukuda, M. 2009. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA. 106, 12109-12114. https://doi.org/10.1073/pnas.0904515106
  2. Biellmann, F., Henion, T. R., Burki, K. and Hennet, T. 2008. Impaired sexual behavior in male mice deficient for the beta1-3 N-acetylglucosaminyltransferase-I gene. Mol. Reprod. Dev. 75, 699-706. https://doi.org/10.1002/mrd.20828
  3. Bless, E., Raitcheva, D., Henion, T. R., Tobet, S. and Schwarting, G. A. 2006. Lactosamine modulates the rate of migration of GnRH neurons during mouse development. Eur. J. Neurosci. 24, 654-660. https://doi.org/10.1111/j.1460-9568.2006.04955.x
  4. Dabrowski, U., Hanfland, P., Egge, H., Kuhn, S. and Dabrowski, J. 1984. Immunochemistry of I/i-active oligo- and polyglycosylceramides from rabbit erythrocyte membranes. Determination of branching patterns of a ceramide pentadecasaccharide by 1H nuclear magnetic resonance. J. Biol. Chem. 259, 7648-7651.
  5. Egan, S., Cohen, B., Sarkar, M., Ying, Y., Cohen, S., Singh, N., Wang, W., Flock, G., Goh, T. and Schachter, H. 2000. Molecular cloning and expression analysis of a mouse UDP-GlcNAc:Gal(beta1-4)Glc(NAc)-R beta1,3-N-acetylglucosaminyltransferase homologous to Drosophila melanogaster Brainiac and the beta1,3-galactosyltransferase family. Glycoconj. J. 17, 867-875. https://doi.org/10.1023/A:1010921313314
  6. Fukuda, M., Dell, A., Oates, J. E. and Fukuda, M. N. 1984. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J. Biol. Chem. 259, 8260-8273.
  7. Fukuda, M., Fukuda, M. N. and Hakomori, S. 1979. Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254, 3700-3703.
  8. Fukuda, M., Spooncer, E., Oates, J. E., Dell, A. and Klock, J. C. 1984. Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J. Biol. Chem. 259, 10925-10935.
  9. Fukuda, M. N., Sasaki, H., Lopez, L. and Fukuda, M. 1989. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73, 84-89.
  10. Fukuta, K., Abe, R., Yokomatsu, T., Kono, N., Asanagi, M., Omae, F., Minowa, M. T., Takeuchi, M. and Makino, T. 2000. Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10, 421-430. https://doi.org/10.1093/glycob/10.4.421
  11. Fukuta, K., Yokomatsu, T., Abe, R., Asanagi, M. and Makino, T. 2000. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj. J. 17, 895-904. https://doi.org/10.1023/A:1010977431061
  12. Hakomori, S. 2002. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA. 99, 10231-10233. https://doi.org/10.1073/pnas.172380699
  13. Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Marth, J. D., Paulson, J. C. and Taniguchi, N. 2010. Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J. Biol. Chem. 285, 6515-6521. https://doi.org/10.1074/jbc.M109.073106
  14. Ko, H. K., Song, K. H., Jin, U. H., Seong, H. H., Chang, Y. C., Kim, N. H., Kim, D. S., Lee, Y. C. and Kim, C. H. 2010. Molecular characterization of pig alpha2,3-Gal-beta1,3-GalNAc-alpha2,6-sialyltransferase (pST6GalNAc IV) gene specific for Neu5Acalpha2-3Galbeta1-3GalNAc trisaccharide structure. Glycoconj. J. 27, 367-374. https://doi.org/10.1007/s10719-010-9284-3
  15. Lee, H. G., Lee, H. C., Kim, S. W., Lee, P., Chung, H. J., Lee, Y. K., Han, J. H., Hwang, I. S., Yoo, J. I., Kim, Y. K., Kim, H. T., Lee, H. T., Chang, W. K. and Park, J. K. 2009. Production of recombinant human von Willebrand factor in the milk of transgenic pigs. J. Reprod. Dev. 55, 484-490. https://doi.org/10.1262/jrd.20212
  16. Lee, M., Park, J. J. and Lee, Y. S. 2010. Adhesion of ST6Gal I-mediated human colon cancer cells to fibronectin contributes to cell survival by integrin beta1-mediated paxillin and AKT activation. Oncol. Rep. 23, 757-761.
  17. Lee, P. L., Kohler, J. J. and Pfeffer, S. R. 2009. Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology 19, 655-664. https://doi.org/10.1093/glycob/cwp035
  18. Lin, J. T., Bhattacharyya, D. and Kecman, V. 2003. Multiple regression and neural networks analyses in composites machining. Compos. Sci. Technol. 63, 539-548. https://doi.org/10.1016/S0266-3538(02)00232-4
  19. Munro, S. 1998. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 8, 11-15. https://doi.org/10.1016/S0962-8924(97)01197-5
  20. Nairn, A. V., York, W. S., Harris, K., Hall, E. M., Pierce, J. M. and Moremen, K. W. 2008. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283, 17298-17313. https://doi.org/10.1074/jbc.M801964200
  21. Park, J. K., Lee, Y. K., Lee, P., Chung, H. J., Kim, S., Lee, H. G., Seo, M. K., Han, J. H., Park, C. G., Kim, H. T., Kim, Y. K., Min, K. S., Kim, J. H., Lee, H. T. and Chang, W. K. 2006. Recombinant human erythropoietin produced in milk of transgenic pigs. J. Biotechnol. 122, 362-371. https://doi.org/10.1016/j.jbiotec.2005.11.021
  22. Patsos, G., Robbe-Masselot, C., Klein, A., Hebbe-Viton, V., Martin, R. S., Masselot, D., Graessmann, M., Paraskeva, C., Gallagher, T. and Corfield, A. 2007. O-glycan regulation of apoptosis and proliferation in colorectal cancer cell lines. Biochem. Soc. Trans. 35, 1372-1374. https://doi.org/10.1042/BST0351372
  23. Rosen, S. D. and Bertozzi, C. R. 1996. Two selectins converge on sulphate. Leukocyte adhesion. Curr. Biol. 6, 261-264. https://doi.org/10.1016/S0960-9822(02)00473-6
  24. Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T. and Fukuda, M. 1997. Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. USA. 94, 14294-14299. https://doi.org/10.1073/pnas.94.26.14294
  25. Seales, E. C., Jurado, G. A., Brunson, B. A., Wakefield, J. K., Frost, A. R. and Bellis, S. L. 2005. Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res. 65, 4645-4652. https://doi.org/10.1158/0008-5472.CAN-04-3117
  26. Su, D., Zhao, H. and Xia, H. 2010. Glycosylation-modified erythropoietin with improved half-life and biological activity. Int. J. Hematol. 91, 238-244. https://doi.org/10.1007/s12185-010-0496-x
  27. Swindall, A. F. and Bellis, S. L. 2011. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J. Biol. Chem. 286, 22982-22990. https://doi.org/10.1074/jbc.M110.211375
  28. Ujita, M., McAuliffe, J., Hindsgaul, O., Sasaki, K., Fukuda, M. N. and Fukuda, M. 1999. Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and beta1,4-galactosyltransferase I. J. Biol. Chem. 274, 16717-16726. https://doi.org/10.1074/jbc.274.24.16717
  29. Wu, Z. L., Ethen, C. M., Prather, B., Machacek, M. and Jiang, W. 2011. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology 21, 727-733. https://doi.org/10.1093/glycob/cwq187
  30. Yang, Z., Wang, S., Halim, A., Schulz, M. A., Frodin, M., Rahman, S. H., Vester-Christensen, M. B., Behrens, C., Kristensen, C., Vakhrushev, S. Y., Bennett, E. P., Wandall, H. H. and Clausen, H. 2015. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol. 33, 842-844. https://doi.org/10.1038/nbt.3280
  31. Yoshida, A., Minowa, M. T., Takamatsu, S., Hara, T., Oguri, S., Ikenaga, H. and Takeuchi, M. 1999. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase. Glycobiology 9, 303-310. https://doi.org/10.1093/glycob/9.3.303