• Title/Summary/Keyword: RC Structure

Search Result 955, Processing Time 0.025 seconds

An Experimental Study on the Application of Cathodic Protection By Applying Zn-Al Metal Spray to an RC Structure (철근콘크리트 구조물에 Zn-Al 금속용사 전기방식 공법의 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Yoo, Jo-Hyeong;Lim, Young-Chul;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.21-29
    • /
    • 2010
  • Cathodic Protection has been introduced as a method of protecting metals under the ground or sea from corrosion. Since 1970, it has been applied to reinforced concrete structures as a corrosion protection method. After 1990, it became used around the world, and its usability has been well confirmed. But this method has some problems in terms of construction and economy. To solve these problems, a Cathodic Protection Method using a highly-durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. The corrosion protection performance was confirmed by measuring the corrosion current of the specimen. Through the experiment, it is possible to confirm that the Cathodic Protection Method using a high metal spray provides effective protection against corrosion to reinforced concrete structures.

A Study on the Composite Behavior of Steel-Concrete with Slip Anchor (슬립앵커를 이용한 강-콘크리트 합성 거동 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Seung-Jun;Han, Seung-Ryong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • Presently, composite method for steel and concrete is often used the stud. Steel properties of composite column could be changed by increasing of welding. The changed properties is possibly to cause local-buckling. Composite column had a large effect by slip instead of pull-out force in comparison composite girder. Improvement of adhesive force had effect by contact area rather than height of stud in composite column. This paper proposed new type of stud and analyzed performance through experimental study. This method would be effect steel structure with curvature.

Studies on the Ecological Change of the Plant Community in the Erosion-Controlled and Rehabilitated Areas - During 9~26 Years After Erosion Control Works - (사방시공지 식물사회의 생태학적 변화에 관한 연구(V) - 사방시공 후 9~26년 간의 변화 -)

  • Lee, Hyun-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.5
    • /
    • pp.59-69
    • /
    • 2003
  • Most denuded mountain areas in Korea were completely stabilized by the successful work of the 1st and 2nd 10-year Forest Development Plans which targeted the reforestation of denuded forest lands. The objectives of this study are (1) to estimate the depth of organic horizon in the soil profile, (2) to investigate the change of vegetation structure, (3) to estimate the change of biomass in the erosion controlled and rehabilitated mountain areas with the passage of time. This study was carried out as the 5th times. The first study began in the year of 1985, the second study was in the year of 1988, the third study was in the year of 1992, 4th was in the year of 1998 and 5th was in the year of 2002. The first study started in the study sites which elapsed 9 years after erosion control works. The results of the study were as follows : The increase rate of soil thickness was estimated to $Y_{(cm)}=2.906log_{(yr)}-3.2476(r^2=0.917)$ during 26 years after erosion control works. The important value of pines decreased to 14.7% on upper layer. But, the important value of alders. which did not plant on erosion control work increased to 27.1%. The decrease of whole crown projection indicates that pines. and alders were heavily injured by pine leaf gall midge in the year of 1993, 1995 years and Agelastica coerulea Baly in the year of 1986, 1987 years at Yoju-gun. The young growth of pines and alders not appeared on the soil surface which elapsed 26 years after erosion control works. On the lower layer, oaks occupied over 50% in I.V, RD, RC, RF. In process of years, the increase of biomass estimated to be $Y_{(t/ha)}={0.7505X_{(yr)}}^{1.6335}\;(r^2=0.9712)$ for 26 years after erosion control works.

Numerical Analysis of Load Carrying Capacity of RC Structures Based on Concrete Damage Model (콘크리트 손상 모델을 적용한 콘크리트 구조물 구조내력 해석)

  • Woo, Sang Kyun;Lee, Yun;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.121-128
    • /
    • 2012
  • In this paper, nonlinear analysis for reinforced concrete structure for power transmission line is performed by considering the characteristics of the failure, which are depend on loading conditions and concrete material models. On the numerical evaluation for the failure behavior, the finite element analysis is applied. For the concrete material model, microplane model based on concrete damage is introduced. However, to describe the crack bridging effect of long and short fiber of steel fiber reinforced concrete (SFRC), tensile softening model is suggested and applied for SFRC. An numerical results by finite element technique are compared with the experiment results for box culvert specimen. Comparing on the experimental and analytical results, validity and reliability of numerical analysis are investigated.

Development and Application of Anti-Corrosive Steel Using Electro-Deposition of Sea Water (1) -Development of Electro-Deposition System Using Sea Water (해수전착 코팅을 이용한 내부식성 철근의 개발 및 적용성에 대한 연구 (1) -해수전착 코팅 시스템 개발)

  • Kwon, Seung Jun;Lee, Myeong Hoon;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.78-87
    • /
    • 2012
  • This study is for developing a system for electro-deposition utilizing sea water containing various ions like calcium and magnesium. This is the first step research for the final goal which is a development of anti-corrosive steel for RC structure, so that this paper is mainly focused on the development for electro-deposition system. Optimum conditions for steel coating is obtained through various tests considering anode type, temperature, duration time, and current density. The composition of electro-deposition is analyzed through SEM, EDS, and XRD and it is evaluated to be $CaCO_3$ and $Mg(OH)_2$. Through measuring polarization potential and current density in the coated steel, the coating layer from the developed system is evaluated to have high resistance to steel corrosion. Additional tests and discussions on durability and structural performance in the coated steel from this work will be performed for the second step research.

Service Life Prediction and Carbonation of Bridge Structures according to Environmental Conditions (환경 조건에 따른 교량구조물의 탄산화 현황 및 내구수명 예측)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.126-132
    • /
    • 2010
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. Reinforced steel corrosion due to concrete carbonation is one of main factors on the decrease in durability of RC structure. This study investigates the influence of carbonation on the bridges under various environment condition and quantifies the effect of carbonation various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. According to experimental results of the carbonation depth, the carbonation depth increased with structural age. It is analyzed that carbonation velocity of the structures under urban area and sea condition is 1.6-1.9 times faster than the river condition. Service life of the bridges under urban area and sea condition is decreased about 2.4-3.3 times than river condition.

Carbonation Analysis of Bridge Structures in Urban Area Based on the Results of the Field Test (현장실험결과를 활용한 국내 도심지 교량구조물의 탄산화 해석)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.111-118
    • /
    • 2010
  • Reinforced steel corrosion due to concrete carbonation is one of main factors on the durability of RC structure. The carbonation velocity have an effect on carbon dioxide density, concrete quality and structural shape. Specially, these problems have increased in urban area. This study investigates the carbonation status of the bridges and quantifies the effect of carbonation based on various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. According to experimental results of the carbonation depth, the carbonation depth increased with structural age and carbonation velocity decreased with high strength of concrete. In most cases, the failure probability of durability by carbonation was more than 10%. Also, The results requires the minimum cover thickness of 70-80mm for target safety index(${\beta}$=1.3) proposed by Korean concrete specification.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

Dynamic Characteristics of Reinforced Concrete Axisymmetric Shell with Initial Imperfection (초기결함을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성 -돔의 결함의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.77-85
    • /
    • 1999
  • In this study, a computer program considering initial imperfection of axisymmetric reinforced concrete shell which plastic deformation by large external loading was developed . Initial imperfection of dome was assumed as 'dimple type' which can be expressed as Wi=(Wo/h)(1-x$^2$)$^3$. The developed model applied to the analysis of dynamic response of axisymmetric reinforced concrete shell when it has initial imperfection. The initial imperfection of 0.0, -5.0, and 5cm and steel and steel layer ratio 0,3, and 5% were tested for numerical examples . The results can be summarized as follows ; 1. Dynmaic response of vertical deflection at dome crown showed slow increased if it has not inital imperfection . But the response showed relatively high amplitude when initial imperfection was inner directed (opposite direction to loading). Similar trends also appeared for different steel layer ratios. 2. Dynamic responses of radial displacement at the junction of dome and wall showed the highest amplitude when initial imperfection was inward directed (opposite direction to loading). The lowest amplitude occurred when initial imperfection was outward directed (same direction to loading). Vibration period also delayed for inward directed initial imperfection . These trends were obvious as steel layer ratio increasing. 3. The effects of imperfection for the dynamic response of radial displacement a the center of wall scarely appeared. The effects of initial imperfection of dome on the dynmaic response of the wall can be neglected. 4. Effect of steel on the dynmic response of axisymmetric shell structure was great when initial imperfection did not exist. And the effect of direction of initial imperfection (inward or outward) did not show big difference.

  • PDF

A Study on the Properties of Anticorrosive for RC Structure (콘크리트구조물 보수용 방식피복재의 특성)

  • Moon, Han-Young;Shin, Dong-Gu;Kwon, Yong-Jin;Oh, Sang-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.251-258
    • /
    • 2005
  • Up until now, most protection design has been concerned primarily with concrete's exterior protection from corrosion, its waterproof ability and its reparability. However, there are many cases in which service life of the concrete is shortened because suitability of the type of concrete surface has not been thoroughly investigated in the development process. According1y, this paper presents the development and test of the material for its reparability and its protection against corrosion in the case of wet surfaces (i.e. water supply facilities, sewage systems, and port facilities) in this country. From the test, both A type and B type are excellent for durability in watertightness, chemical resistance and abrasion. Test results of adhesive strength over $15kgf/cm^2$ under both wet and dry conditions, curing conditions and various temperatures conditions were also achieved in field tests.