• Title/Summary/Keyword: RB1 gene

Search Result 96, Processing Time 0.028 seconds

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

DNA Microarray Analysis of Methylprednisolone Inducible Genes in the PC12 Cells

  • Choi, Woo-Jin;Choi, Seung-Won;Kim, Seon-Hwan;Kim, Youn;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.261-263
    • /
    • 2009
  • Methylprednisolone is a synthetic glucocorticoid which is usually taken intravenously for many neurosurgical diseases which cause edema including brain tumor, and trauma including spinal cord injury. Methylprednisolone reduces swelling and decreases the body's immune response. It is also used to treat many immune and allergic disorders, such as arthritis, lupus, psoriasis, asthma, ulcerative colitis, and Crohn's disease. To identify genes expressed during methylprednisolone treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up- or down-regulated genes) which are methylprednisolone differentially expressed in neurons. Lipocalin 3 is the gene most significantly increased among 772 up-regulated genes (more than 2 fold over-expression) and Aristaless 3 is the gene most dramatically decreased among 959 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Fgb, Thbd, Cfi, F3, Kngl, Serpinel, C3, Tnfrsf4 and Il8rb are involved stress-response gene, and Nfkbia, Casp7, Pik3rl, I11b, Unc5a, Tgfb2, Kitl and Fgf15 are strongly associated with development. Cell cycle associated genes (Mcm6, Ccnb2, Plk1, Ccnd1, E2f1, Cdc2a, Tgfa, Dusp6, Id3) and cell proliferation associated genes (Ccl2, Tnfsf13, Csf2, Kit, Pim1, Nr3c1, Chrm4, Fosl1, Spp1) are down-regulated more than 2 times by methylprednisolone treatment. Among the genes described above, 4 up-regulated genes are confirmed those expression by RT-PCR. We found that methylprednisolone is related to expression of many genes associated with stress response, development, cell cycle, and cell proliferation by DNA microarray analysis. However, We think further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by methylprednisolone. The resulting data will give the one of the good clues for understanding of methylprednisolone under molecular level in the neurons.

  • PDF

Association of Genetic Polymorphism of IL-2 Receptor Subunit and Tuberculosis Case

  • Lee, Sang-In;Jin, Hyun-Seok;Park, Sangjung
    • Biomedical Science Letters
    • /
    • v.24 no.2
    • /
    • pp.94-101
    • /
    • 2018
  • Tuberculosis (TB) is infectious disease caused by Mycobacterium tuberculosis (MTB) infection. It is known that not only the property of microorganism but also the genetic susceptibility of infected patients is controlled. Interleukin 2 (IL-2) is a cytokine belonging to type 1 T helper (Th1) activity. In addition, IL-2, when infected with MTB, binds IL-2 receptor and promotes T cell replication and is involved in granuloma formation. The aim of this study was to investigate the genetic polymorphisms of the IL-2 receptor gene in tuberculosis patients and normal individuals. We analyzed 22 SNPs in three genes using the genotype data of 443 tuberculosis cases and 3,228 healthy controls from the Korea Association Resource for their correlation with tuberculosis case. IL2RA, IL2RB, and IL2RG genes were genotyped of 16, 4, and 2 SNPs, respectively. Among three genes, only IL2RA gene polymorphisms showed statistically significant association with tuberculosis case. 6 SNPs with high significance were identified in the IL2RA gene. In addition, the linkage disequilibrium (LD) structure of IL2RA gene was confirmed. SNP imputation of IL2RA gene was performed, it was confirmed that more SNPs were significant between case and control. If we look at the results of IL2RA gene analysis above, we can see that genetic polymorphism in the gene expressing $IL-2R{\alpha}$ will regulate the expression level of $IL-2R{\alpha}$, and the change in the immune system involved in $IL-2R{\alpha}$. In this study, genetic polymorphism that may affect host immunity suggests that susceptibility to tuberculosis may be controlled.

Cold-induced ginsenosides accumulation is associated with the alteration in DNA methylation and relative gene expression in perennial American ginseng (Panax quinquefolius L.) along with its plant growth and development process

  • Hao, Mengzhen;Zhou, Yuhang;Zhou, Jinhui;Zhang, Min;Yan, Kangjiao;Jiang, Sheng;Wang, Wenshui;Peng, Xiaoping;Zhou, San
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.747-755
    • /
    • 2020
  • Background: Ginsenosides accumulation responses to temperature are critical to quality formation in cold-dependent American ginseng. However, the studies on cold requirement mechanism relevant to ginsenosides have been limited in this species. Methods: Two experiments were carried out: one was a multivariate linear regression analysis between the ginsenosides accumulation and the environmental conditions of American ginseng from different sites of China and the other was a synchronous determination of ginsenosides accumulation, overall DNA methylation, and relative gene expression in different tissues during different developmental stages of American ginseng after experiencing different cold exposure duration treatments. Results: Results showed that the variation of the contents as well as the yields of total and individual ginsenosides Rg1, Re, and Rb1 in the roots were closely associated with environmental temperature conditions which implied that the cold environment plays a decisive role in the ginsenoside accumulation of American ginseng. Further results showed that there is a cyclically reversible dynamism between methylation and demethylation of DNA in the perennial American ginseng in response to temperature seasonality. And sufficient cold exposure duration in winter caused sufficient DNA demethylation in tender leaves in early spring and then accompanied the high expression of flowering gene PqFT in flowering stages and ginsenosides biosynthesis gene PqDDS in green berry stages successively, and finally, maximum ginsenosides accumulation occurred in the roots of American ginseng. Conclusion: We, therefore, hypothesized that cold-induced DNA methylation changes might regulate relative gene expression involving both plant development and plant secondary metabolites in such cold-dependent perennial plant species.

Effect of Hyulbuchukeotang on the Inhibition of Proliferation of Uterine leiomyoma cells and Cell apoptosis (혈부축어탕(血府逐瘀湯) 자궁근종세포의 증식억제와 Apoptosis 관련 유전자 발현에 미치는 영향)

  • Moon, Na-Young;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.186-198
    • /
    • 2006
  • Purpose : The purpose of this study is to demonstrate the direct inhibitory effect of Hyulbuchukeotang on the proliferation of uterine leiomyoma cells through an experiment treating uterine leiomyoma cells cultivated by explantation with indicated concentrations of Hyulbuchukeotang and to research the gene expression related to cell cycle ill order to discover the connection with apoptosis and its mechanism by analyzing cell cycle. Methods : After primary culture of uterine leiomyoma cells, the cultivated uterine leiomyoma cells were treated with indicated concentrations of Hyulbuchukeotang for 24 hours. The inhibitory effect on the cell proliferation was determined by the cell count assay. The value of a cell count assay represent the percentage of cells in a phase of the cell cycle compared with total cells. In addition, a link between Hyulbuchukeotang and apoptosis was examined through flow cytometric analysis by FACS and DNA fragmentation analysis. Finally, the degree of gene expression related to cell cycle was evaluated by Western blot analysis. Results : The inhibitory effect of Hyulbuchukeotang increase of uterine leiomyoma cells treated with indicated concentrations of Hyulbuchkeotang increases. The result of gene expression related to G1 phase after treating with 100, 250, 500, 1,000 ${\mu}g/ml$ concentrations of Hyulbuchukeotang. on uterine leiomyoma cells is that the gene expression of p27 was increased but that of p53 an p21 remained unchanged and the gene of pRB, pro-caspase 3 was decreased. Conclusion Through the mentioned experiments, it is demonstrated that Hyulbuchkeotang is effective in inhibiting Proliferation of uterine leiomyoma cells by extending cell cycle G1. However it is not considered that the inhibitory effect results from the aptoposis.

  • PDF

Development of high tryptophan GM rice and its transcriptome analysis (고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석)

  • Jung, Yu Jin;Nogoy, Franz Marielle;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Investigation of TYR and MC1R polymorphisms in Korean native chickens and the commercial chickens (토종닭과 실용계에서 TYR 및 MC1R 유전자의 변이 분석)

  • Heo, Kang-Nyeong;Choo, Hyo-Jun;Seo, Bo-Young;Park, Mi-Na;Jung, Kie-Chul;Hwang, Bo-Jong;Kim, Hak-Kyu;Hong, Eui-Chul;Seo, Ok-Suk;Kang, Bo-Seok
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.465-471
    • /
    • 2011
  • The commercial Korean native chickens (WR_CC) was developed by crossing a few native chicken breeds in Korea. In order to investigate the breed identification markers, SNPs from TYR gene and MC1R gene, which are associated with skin and feather colors respectively, were initially identified. In case of 3 identified SNPs in the TYR gene, yellow shank color was identified in Loss, Harvard, AA, RIR and CC, which have the fixed SNPs in most of the animals. On the other hand, SNP variations were observed in KNC_RB, C_B, WR_CC and HH_CC, which have the black, yellow and mixed color with black and yellow shank colors. Also, the investigation of 3 SNPs in the MC1R gene indicated that there were associations between shank and feather colors in RIR, SF, KNC_B, C_B and RIR. However, these results are not consistent among breeds. These SNP type inconsistencies within breeds suggested that the selection was performed based on the phenotypes, which is not include the genotype information. Thus, selection based on genetic information is required in the future.

Analysis of right border flanking sequence in transgenic chinese cabbage harboring integrated T-DNA (Agrobacterium을 이용하여 형질전환시킨 배추에서 T-DNA Right Border 인접염기서열 분석)

  • Ahn, Hong-Il;Shin, Kong-Sik;Woo, Hee-Jong;Lee, Ki-Jong;Kim, Hyo-Sung;Park, Yong-Hwan;Suh, Seok-Cheol;Cho, Hyun-Suk;Kweon, Soon-Jong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • We developed 14 transgenic lines of Chinese cabbage (Brassica rapa) harboring the T-DNA border sequences and CryIAc1 transgene of the binary vector 416 using Agrobacterium tumefaciens-mediated DNA transfer. Six lines had single copy cryIAc1 gene and four of them contained no vector backbone DNA. Of the left border (LB) flanking sequences six nucleotides were deleted in transgenic lines 416-2 and 416-3, eleven nucleotides in line 416-9, and 65 nucleotides including the whole LB sequences in line 416-17, respectively. And we defined 499 bp of genomic DNA (gDNA) of transformed Chinese cabbage, and blast results showed 96% homology with Brassica oleracea sequences. PCR with specific primer for the right border (RB) franking sequence revealed 834 bp of PCR product sequence, and it was consisted of 3' end of cryIAc1, nosterminal region and 52 bp of Chinese cabbage genomic DNA near RB. RB sequences were not found and the 58 nucleotides including 21 bp of nos-terminator 3' end were deleted. Also, there were deletion of 10 bp of the known genomic sequences and insertion of 65 bp undefined genomic sequences of Chinese cabbage in the integration site. These results demonstrate that the integration of T-DNA can be accompanied by unusual deletions and insertions both in transgenic and genomic sequences.