DOI QR코드

DOI QR Code

고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석

Development of high tryptophan GM rice and its transcriptome analysis

  • 정유진 (국립한경대학교 원예학과) ;
  • ;
  • 조용구 (충북대학교 농업생명환경대학 식물자원학과) ;
  • 강권규 (국립한경대학교 유전공학연구소)
  • 투고 : 2015.09.23
  • 심사 : 2015.09.23
  • 발행 : 2015.09.30

초록

Anthranilate synthase (AS)는 트립토판(Trp)과 indole-3-acetic acid, indole alkaloids의 생합성 경로에서 중요한 효소로 작용한다. 트립토판 생합성 상에서 feedback inhibition에 민감하게 반응하는 AS alpha-subunit 관련 OASA2 유전자 영역의 single (F124V) 및 double (S126F/L530D) 점돌연변이로 변형된 유전자의 재조합운반체를 작성하고 이들 유전자들을 Agrobacterium 방법으로 동진벼에 도입하여 형질전환체를 육성하였다. Single 및 double 돌연변이 OsASA2 유전자가 도입된 형질전환 벼 계통들은 nos gene probe를 이용한 TaqMan PCR 방법으로 single copy를 선발하였고, intergenic 계통을 선발하기 위해서 Bfa I 제한효소를 이용하여 RB와 LB 인접서열로부터 IPCR을 통한 FST 분석을 수행하여 4 개의 intergenic 계통을 선발하였다. 도입된 유전자의 발현으로 형질전환 벼는 Trp, IAN 및 IAA가 잎에 가장 많이 축적되었고, 종자의 트립토판 함량도 증가되었다. 후대에서 tryptophan 함량이 높은 S-TG와 D-TG의 두 호모 이벤트 계통을 육성하여 트립토판 함량을 분석한 결과 대조구에 비하여 13~30배 이상 높게 나타났으며, 유리아미노산의 함량도 증가하였다. 이벤트 계통을 이용하여 microarray 분석을 수행한 결과 세포 내 이온 수송, 영양분 공급 등에 영향을 주는 유전자군들이 up-regulation 되었고, 세포 내 기능유전자의 역할을 담당하는 조효소 등이 down-regulation 된 것을 확인 할 수 있었다. 이러한 결과는 선발된 두개의 상동성 이벤트 계통들이 고함량의 유리 트립토판 생산 벼의 육종에 효과적으로 이용될 수 있음을 보여준 결과로 생각된다.

Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.

키워드

참고문헌

  1. Bartel B (1997) Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:51-66 https://doi.org/10.1146/annurev.arplant.48.1.51
  2. Bender J, Fink GR (1998) A myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proceedings of the National Academy of Sciences, USA 95:5655-5660 https://doi.org/10.1073/pnas.95.10.5655
  3. Bohlmann J, DeLuca V, Eilert U, Martin W (1995) Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes. Plant J 7:491-501 https://doi.org/10.1046/j.1365-313X.1995.7030491.x
  4. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtanikaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 35:627-634
  5. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 (Suppl 1): S96-S104 https://doi.org/10.1093/bioinformatics/18.suppl_1.S96
  6. Ishihara A, Matsuda F, Miyagawa H, Wakasa K (2007) Metabolomics for metabolically manipulated plants: effects of tryptophan overproduction. Metabolomics 3:319-334 https://doi.org/10.1007/s11306-007-0072-4
  7. Jung YJ, Lee MC, Kang KK (2011) A transcription factor "OsNAC075" is essential for salt resistance in rice (Oryza sativa L.). J Plant Biotechnol 38:94-104 https://doi.org/10.5010/JPB.2011.38.1.094
  8. Jung YJ, Nou IS, Kang KK (2014) Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed. Biotech. 2(4):370-379 https://doi.org/10.9787/PBB.2014.2.4.370
  9. Keay S, Seillier-Moiseiwitsch F, Zhang CO, Chai TC, Zhang J (2003) Changes in human bladder epithelial cell gene expression associated with interstitial cystitis or antiproliferative factor treatment. Physiological Genomics 14:107-115 https://doi.org/10.1152/physiolgenomics.00055.2003
  10. Kim DS, Lee IS, Jang CS, Kang SY, Seo YW (2005) Characterization of the altered anthranilate synthase in 5-methyltryptophan- resistant rice mutants. Plant Cell Rep 24:357-365 https://doi.org/10.1007/s00299-005-0943-y
  11. Lee HJ, Abdula SE, Jee MG, Jang DW, Cho YG (2011) High-efficiency and Rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. J Plant Biotechnol 38:251-257 https://doi.org/10.5010/JPB.2011.38.4.251
  12. Lee HY, Kameya T (1991) Selection and characterization of a rice mutant resistant to 5-methyltryptophan. Theor Appl Genet 82:405-408 https://doi.org/10.1007/BF00588590
  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  14. Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Reporter 19:698-704 https://doi.org/10.1007/s002990000206
  15. Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921-934 https://doi.org/10.1105/tpc.7.7.921
  16. Romero RM, Roberts MF (1996) Anthranilate synthase from Ailanthus altissima cell suspension cultures. Phytochemistry 41:395-402 https://doi.org/10.1016/0031-9422(95)00617-6
  17. Thole V, Alves SC, Worland B, Bevan MW, Vain P (2009) A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nature Protocols 4:650-661 https://doi.org/10.1038/nprot.2009.32
  18. Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase a-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiology 126:1493-1506 https://doi.org/10.1104/pp.126.4.1493
  19. Ueno M, Shibata H, Kihara J, Honda Y, Arase S (2003) Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. The Plant Journal 36: 215-228 https://doi.org/10.1046/j.1365-313X.2003.01875.x
  20. Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069-3078 https://doi.org/10.1093/jxb/erl068
  21. Wakasa K, Ishihara A (2009) Metabolic engineering of the tryptophan and phenylalanine biosynthetic pathways in rice. Plant Biotechnol 26:523-533 https://doi.org/10.5511/plantbiotechnology.26.523
  22. Wakasa K, Widholm JM (1987) A 5-methyltryptophan resistant rice mutant, MTR1, selected in tissue-culture. Theor Appl Genet 74:49-54 https://doi.org/10.1007/BF00290082

피인용 문헌

  1. Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice vol.45, pp.1, 2018, https://doi.org/10.5010/JPB.2018.45.1.063