DOI QR코드

DOI QR Code

Analysis of right border flanking sequence in transgenic chinese cabbage harboring integrated T-DNA

Agrobacterium을 이용하여 형질전환시킨 배추에서 T-DNA Right Border 인접염기서열 분석

  • Ahn, Hong-Il (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Shin, Kong-Sik (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Woo, Hee-Jong (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Ki-Jong (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyo-Sung (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Park, Yong-Hwan (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Suh, Seok-Cheol (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Cho, Hyun-Suk (Biosafety Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, Soon-Jong (Biosafety Division, National Academy of Agricultural Science, RDA)
  • 안홍일 (국립농업과학원 생물안전성과) ;
  • 신공식 (국립농업과학원 생물안전성과) ;
  • 우희종 (국립농업과학원 생물안전성과) ;
  • 이기종 (국립농업과학원 생물안전성과) ;
  • 김효성 (국립농업과학원 생물안전성과) ;
  • 박용환 (국립농업과학원 생물안전성과) ;
  • 서석철 (국립농업과학원 생물안전성과) ;
  • 조현석 (국립농업과학원 생물안전성과) ;
  • 권순종 (국립농업과학원 생물안전성과)
  • Received : 2010.11.15
  • Accepted : 2010.12.15
  • Published : 2011.03.31

Abstract

We developed 14 transgenic lines of Chinese cabbage (Brassica rapa) harboring the T-DNA border sequences and CryIAc1 transgene of the binary vector 416 using Agrobacterium tumefaciens-mediated DNA transfer. Six lines had single copy cryIAc1 gene and four of them contained no vector backbone DNA. Of the left border (LB) flanking sequences six nucleotides were deleted in transgenic lines 416-2 and 416-3, eleven nucleotides in line 416-9, and 65 nucleotides including the whole LB sequences in line 416-17, respectively. And we defined 499 bp of genomic DNA (gDNA) of transformed Chinese cabbage, and blast results showed 96% homology with Brassica oleracea sequences. PCR with specific primer for the right border (RB) franking sequence revealed 834 bp of PCR product sequence, and it was consisted of 3' end of cryIAc1, nosterminal region and 52 bp of Chinese cabbage genomic DNA near RB. RB sequences were not found and the 58 nucleotides including 21 bp of nos-terminator 3' end were deleted. Also, there were deletion of 10 bp of the known genomic sequences and insertion of 65 bp undefined genomic sequences of Chinese cabbage in the integration site. These results demonstrate that the integration of T-DNA can be accompanied by unusual deletions and insertions both in transgenic and genomic sequences.

Agrobacterium tumefaciens와 운반체 416을 이용하여 cryIAc1 유전자가 형질전환된 배추 14개체를 선발하였다. Southern blot을 통하여 분석한 결과 1 사본 유전자가 도입된 개체가 6개이었으며 backbone 염기서열이 포함되지 않은 경우는 4개체이었다. LB 인접서열 분석 결과, 416-2과 416-3은 23 bp의 LB 부위가 남아있는 동일한 염기서열을 보였고, 416-9 경우 15 bp가 남았으며, 416-17 경우 LB를 포함하여 안쪽의 염기서열의 최대 36 bp의 결실이 확인되었다. T-DNA의 염기서열을 제외한 배추 gDNA의 499 bp의 LB 인접염기서열은 B. oleracea의 염기서열과 96% 상동성을 가진 유전자로 확인되었다. RB border 인접서열 분석용 primer를 제작하여 PCR을 수행한 결과 모두 834 bp의 염기서열을 확인하였고, vector의 구성 요소 중 cryIAc1의 3' 말단 부위, nos-terminator 부위와 52 bp 및 배추 gDNA RB 인접염기서열로 확인되었다. RB 염기서열은 확인할 수 없었으며 nos-terminator 3' 말단의 21개의 염기를 포함하여 모두 58개의 염기서열이 결실된 것을 확인하였다. 형질전환식물체를 제작할 경우 발생하는 전이유전자나 식물의 염색체에 염기 결실은 매우 다양한 형태로 나타난다. 이번 실험의 경우, 전이유전자가 삽입된 위치에서 약 10 bp의 배추의 gDNA 염기가 결실된 것이나 삽입된 전이유전자의 RB 말단부분이 결실된 것은 예상할 수 있는 결과였지만, 특히 전이유전자의 말단인 nos-terminator 3' 끝에 65 bp 정도의 배추의 다른 유전자가 삽입되어 있다는 것을 확인하였고 이는 기대하지 않았던 결과였다. 삽입된 다른 배추유전자의 절편은 앞으로 더 많은 연구를 통하여 위치와 기능확인이 필요할 것이다.

Keywords

References

  1. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607-619 https://doi.org/10.3732/ajb.93.4.607
  2. De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacteriummediated transformation. Mol Breed 6:459-468 https://doi.org/10.1023/A:1026575524345
  3. Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Snyder MW, Zang Q, Luethy MH (2004) Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13:451-461 https://doi.org/10.1007/s11248-004-1453-3
  4. Kim JH, Lee S (2007) Analysis of junction between T-DNA and plant genome in transgenic Arabidopsis thaliana. J of plant biology 50:455-460 https://doi.org/10.1007/BF03030682
  5. Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, Ahn GH (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761-773 https://doi.org/10.1023/A:1025093101021
  6. Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA vector 'backbone' sequence into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945-957 https://doi.org/10.1046/j.1365-313X.1997.11050945.x
  7. Kumar S, Fladung M (2002) Transgene integration in aspen: Structures of integration sites and mechanism of T-DNA integration. Plant J 31:543-551 https://doi.org/10.1046/j.1365-313X.2002.01368.x
  8. Kuraya Y, Ohta S, Fukuda M, Hiei Y, Murai N, Hamada K, Ueki J, Imaseki H, Komari T (2004) Suppression of transfer of non-T-DNA 'vector backbone' sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol Breed 14: 309-320 https://doi.org/10.1023/B:MOLB.0000047792.77219.bb
  9. Lim SH, SH Park, JH Kim, NY Kim, SY Won, SM Lee, KS Shin, HJ Woo, DH Kim, HS Cho. (2008) Analysis of junction between T-DNA and plant genome in insect resistance GM chinese cabbage. J Plant Biotechnol 35(2):101-108 https://doi.org/10.5010/JPB.2008.35.2.101
  10. Jae-Gyeong Yu, Ji-Hyun Park, Young-Doo Park (2010) Current status of Brassica rapa functional genome research in Korea J Plant Biotechnol 37:166-173 https://doi.org/10.5010/JPB.2010.37.2.166
  11. Sheng J. Citovsky V (1996) Agrobacterium-plant cell DNA transport; have virulence proteins, will travel. Plant Cell 8:1699-1710 https://doi.org/10.1105/tpc.8.10.1699
  12. Stahl R, Horvath H, van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99:2146-2151 https://doi.org/10.1073/pnas.032645299
  13. Sung SK, GH Yu, GH An. (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple Plant Physiology 120:969-978 https://doi.org/10.1104/pp.120.4.969
  14. Yu Jae-Gyeong, Ji-Hyun Park, Young-Doo Park (2010) Current status of Brassica rapa functional genome research in Korea J Plant Biotechnol 37:166-173 https://doi.org/10.5010/JPB.2010.37.2.166
  15. Zupan J, Muth TR, Draper J, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11-23 https://doi.org/10.1046/j.1365-313x.2000.00808.x

Cited by

  1. Event-specific qualitative and quantitative polymerase chain reaction methods for detection of insect-resistant genetically modified Chinese cabbage based on the 3′-junction of the insertion site vol.55, pp.3, 2012, https://doi.org/10.1007/s13765-012-2028-2