• Title/Summary/Keyword: R.M.R

Search Result 16,653, Processing Time 0.049 seconds

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Gholamreza Pirmohammadi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.273-280
    • /
    • 2024
  • Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

COLOCALIZATION OF GENERALIZED LOCAL HOMOLOGY MODULES

  • Hatamkhani, Marziyeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.917-928
    • /
    • 2022
  • Let R be a commutative Noetherian ring and I an ideal of R. In this paper, we study colocalization of generalized local homology modules. We intend to establish a dual case of local-global principle for the finiteness of generalized local cohomology modules. Let M be a finitely generated R-module and N a representable R-module. We introduce the notions of the representation dimension rI(M, N) and artinianness dimension aI(M, N) of M, N with respect to I by rI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not representable} and aI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not artinian} and we show that aI(M, N) = rI(M, N) = inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)} ≥ inf{aIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)}. Also, in the case where R is semi-local and N a semi discrete linearly compact R-module such that N/∩t>0ItN is artinian we prove that inf{i : HIi(M, N) is not minimax}=inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)\Max(R)}.

On Fuzzy r-Minimal Semicompactness on Fuzzy r-Minimal Spaces

  • Min, Won-Keun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.103-107
    • /
    • 2011
  • The concepts of fuzzy r-minimal semicompact, almost fuzzy r-minimal semicompact, and nearly fuzzy r-minimal semicompact on fuzzy r-minimal spaces arc introduced. We also investigate the relationships between fuzzy r-M-semicontinuous mappings and several types of fuzzy r-minimal semicompactness.

A Note on Noetherian Polynomial Modules

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.417-421
    • /
    • 2024
  • Let R be a commutative ring and let M be an R-module. In this note, we give a brief proof of the Hilbert basis theorem for Noetherian modules. This states that if R contains the identity and M is a Noetherian unitary R-module, then M[X] is a Noetherian R[X]-module. We also show that if M[X] is a Noetherian R[X]-module, then M is a Noetherian R-module and there exists an element e ∈ R such that em = m for all m ∈ M. Finally, we prove that if M[X] is a Noetherian R[X]-module and annR(M) = (0), then R has the identity and M is a unitary R-module.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

COLOCALIZATION OF LOCAL HOMOLOGY MODULES

  • Rezaei, Shahram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.167-177
    • /
    • 2020
  • Let I be an ideal of Noetherian local ring (R, m) and M an artinian R-module. In this paper, we study colocalization of local homology modules. In fact we give Colocal-global Principle for the artinianness and minimaxness of local homology modules, which is a dual case of Local-global Principle for the finiteness of local cohomology modules. We define the representation dimension rI (M) of M and the artinianness dimension aI (M) of M relative to I by rI (M) = inf{i ∈ ℕ0 : HIi (M) is not representable}, and aI (M) = inf{i ∈ ℕ0 : HIi (M) is not artinian} and we will prove that i) aI (M) = rI (M) = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)} ≥ inf{aIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) inf{i ∈ ℕ0 : HIi (M) is not minimax} = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}. Also, we define the upper representation dimension RI (M) of M relative to I by RI (M) = sup{i ∈ ℕ0 : HIi (M) is not representable}, and we will show that i) sup{i ∈ ℕ0 : HIi (M) ≠ 0} = sup{i ∈ ℕ0 : HIi (M) is not artinian} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) sup{i ∈ ℕ0 : HIi (M) is not finitely generated} = sup{i ∈ ℕ0 : HIi (M) is not minimax} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}.

GENERALIZED LOCAL COHOMOLOGY AND MATLIS DUALITY

  • Abbasi, Ahmad
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.513-519
    • /
    • 2008
  • Let (R, m) be a Noetherian local ring with maximal ideal m, E := $E_R$(R/m) and let I be an ideal of R. Let M and N be finitely generated R-modules. It is shown that $H^n_I(M,(H^n_I(N)^{\vee})){\cong}(M{\otimes}_RN)^{\vee}$ where grade(I, N) = n = $cd_i$(I, N). We also show that for n = grade(I, R), one has $End_R(H^n_I(P,R)^{\vee}){\cong}Ext^n_R(H^n_I(P,R),P^*)^{\vee}$.