KYUNGPOOK Math. J. 64(2024), 417-421 https://doi.org/10.5666/KMJ.2024.64.3.417 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Note on Noetherian Polynomial Modules

Jung Wook Lim

Department of Mathematics, Kyungpook National University, Daegu, 41566, Republic of Korea

e-mail: jwlim@knu.ac.kr

ABSTRACT. Let R be a commutative ring and let M be an R-module. In this note, we give a brief proof of the Hilbert basis theorem for Noetherian modules. This states that if Rcontains the identity and M is a Noetherian unitary R-module, then M[X] is a Noetherian R[X]-module. We also show that if M[X] is a Noetherian R[X]-module, then M is a Noetherian R-module and there exists an element $e \in R$ such that em = m for all $m \in M$. Finally, we prove that if M[X] is a Noetherian R[X]-module and $\operatorname{ann}_R(M) = (0)$, then Rhas the identity and M is a unitary R-module.

1. Introduction

Let R be a commutative ring and let R[X] be the polynomial ring over R. For an R-module M, let M[X] be the set of polynomials in an indeterminate X with coefficients in M. Then M[X] is an R[X]-module under the usual addition and the scalar multiplication as follows: For $f = \sum_{i=0}^{m} a_i X^i$, $g = \sum_{i=0}^{n} b_i X^i \in M[X]$ with $m \ge n$ and $h = \sum_{i=0}^{\ell} r_i X^i \in R[X]$,

$$f + g := \sum_{i=0}^{n} (a_i + b_i) X^i + \sum_{i=n+1}^{m} a_i X$$

and

$$hf := \sum_{i=0}^{\ell+m} c_i X^i,$$

where $c_i = \sum_{k=0}^{i} r_k a_{i-k}$ for all $i = 0, \dots, \ell + m$ (cf. [2, Chapter 2, Exercise 6]). We call M[X] the polynomial R[X]-module.

Let R be a commutative ring and let M be an R-module. Recall that M is a Noetherian module if it satisfies the ascending chain condition on R-submodules of M (or equivalently, every R-submodule of M is finitely generated); and R is a Noetherian ring if R is a Noetherian R-module. It is well known as Hilbert basis theorem for Noetherian modules that if R is a commutative ring with identity and M is a Noetherian unitary R-module, then M[X] is a Noetherian R[X]-module [2, Chapter 7, Exercise 10]. When M = R, it recovers the well-known Hilbert basis

2020 Mathematics Subject Classification: 13E05, 13F20.

Received November 2, 2023; revised January 26, 2024; accepted January 30, 2024.

Key words and phrases: Noetherian module, Hilbert basis theorem, Nagata's idealization.

theorem which states that if R is a Noetherian ring, then R[X] is also a Noetherian ring [2, Chapter 7, Theorem 7.5] (or [4, Theorem 69]).

In this note, we study Hilbert basis theorem for Noetherian modules. We first give a brief proof of Hilbert basis theorem for Noetherian modules. We next consider the converse of Hilbert basis theorem for Noetherian modules. More precisely, we show that if M[X] is a Noetherian R[X]-module, then M is a Noetherian R-module and there exists an element $e \in R$ such that em = m for all $m \in M$. We also prove that if M[X] is a Noetherian R[X]-module and $\operatorname{ann}_R(M) = (0)$, then R contains the identity and M is a unitary R-module.

2. Main Results

We start this section with Hilbert basis theorem for Noetherian modules. While the result appears in [2, Chapter 7, Exercise 10], we insert a brief proof for the sake of reader's easy understanding.

Theorem 1. Let R be a commutative ring with identity and let M be a unitary R-module. If M is a Noetherian R-module, then M[X] is a Noetherian R[X]-module.

Proof. Suppose to the contrary that M[X] is not a Noetherian R[X]-module. Then there exists an R[X]-submodule N of M[X] which is not finitely generated. Let f_1 be a nonzero element of least degree in N. Then $\langle f_1 \rangle \subseteq N$. Let f_2 be an element of least degree in $N \setminus \langle f_1 \rangle$. Then $\langle f_1, f_2 \rangle \subseteq N$. By repeating this process, for all integers $k \ge 1$, there exists an element f_{k+1} of least degree in $N \setminus \langle f_1, \ldots, f_k \rangle$. For each integer $i \ge 1$, let a_i be the leading coefficient of f_i and let d_i be the degree of f_i . Then $d_i \le d_{i+1}$ for all integers $i \ge 1$. Since M is a Noetherian R-module, the ascending chain $\langle a_1 \rangle \subseteq \langle a_1, a_2 \rangle \subseteq \cdots$ of R-submodules of M is stationary; so there exists an integer $\ell \ge 1$ such that $\langle a_1, \ldots, a_\ell \rangle = \langle a_1, \ldots, a_{\ell+1} \rangle$. Therefore $a_{\ell+1} \in \langle a_1, \ldots, a_\ell \rangle$. Write $a_{\ell+1} = r_1a_1 + \cdots + r_\ell a_\ell$ for some $r_1, \ldots, r_\ell \in R$. Let $g = f_{\ell+1} - ((r_1 X^{d_{\ell+1}-d_1})f_1 + \cdots + (r_\ell X^{d_{\ell+1}-d_\ell})f_\ell)$. Then $g \in N \setminus \langle f_1, \ldots, f_\ell \rangle$ and $\deg(g) < \deg(f_{\ell+1})$. This is a contradiction to the choice of $f_{\ell+1}$. Thus M[X] is a Noetherian R[X]-module.

We next consider the converse of Hilbert basis theorem for Noetherian modules. In order to study the converse of Hilbert basis theorem for Noetherian modules, we give a result which is required to prove the main theorem.

Lemma 2. Let R be a commutative ring and let M be an R-module. If M[X] is a Noetherian R[X]-module, then the following assertions hold.

- (1) M is a Noetherian R-module.
- (2) For each $m \in M$, there exists an element $r \in R$ such that rm = m.

Proof. (1) Let N be an R-submodule of M. Then N[X] is an R[X]-submodule of M[X]. Since M[X] is a Noetherian R[X]-module, there exist $g_1, \ldots, g_k \in N[X]$ such that $N[X] = \langle g_1, \ldots, g_k \rangle$. Let $n \in N$. Then we obtain

$$n = f_1 g_1 + \dots + f_k g_k + \ell_1 g_1 + \dots + \ell_k g_k$$

for some $f_1, \ldots, f_k \in R[X]$ and $\ell_1, \ldots, \ell_k \in \mathbb{Z}$. For each $i = 1, \ldots, k$, write $f_i = \sum_{j=0}^{\alpha_i} r_{ij} X^j$ and $g_i = \sum_{j=0}^{\beta_i} n_{ij} X^j$. Then we have

$$n = r_{10}n_{10} + \dots + r_{k0}n_{k0} + \ell_1n_{10} + \dots + \ell_kn_{k0};$$

so $N = \langle n_{10}, \ldots, n_{k0} \rangle$. Hence N is a finitely generated R-submodule of M. Thus M is a Noetherian R-module.

(2) Let $m \in M$. Then $\langle m \rangle \subseteq \langle m, mX \rangle \subseteq \langle m, mX, mX^2 \rangle \subseteq \cdots$ is an ascending chain of R[X]-submodules of M[X]. Since M[X] is a Noetherian R[X]-module, there exists a nonnegative integer q such that $\langle m, \ldots, mX^q \rangle = \langle m, \ldots, mX^{q+1} \rangle$; so $mX^{q+1} \in \langle m, \ldots, mX^q \rangle$. Therefore we have

$$mX^{q+1} = f_0m + \dots + f_q(mX^q) + \ell_0m + \dots + \ell_q(mX^q)$$

for some $f_0, \ldots, f_q \in R[X]$ and $\ell_0, \ldots, \ell_q \in \mathbb{Z}$. For each $i = 0, \ldots, q$, write $f_i = \sum_{j=0}^{\alpha_i} r_{ij} X^j$. By comparing the coefficients of X^{q+1} in both sides, we obtain

$$m = r_{0q+1}m + \dots + r_{q1}m = (r_{0q+1} + \dots + r_{q1})m.$$

Note that $r_{0q+1} + \cdots + r_{q1} \in R$. Thus the proof is done.

Let R be a commutative ring and let M be an R-module. Then $\operatorname{ann}_R(M) := \{r \in R \mid rM = \{0\}\}$ is an ideal of R and is called the *annihilator* of M in R. We are now ready to give the main result in this note.

Theorem 3. Let R be a commutative ring and let M be an R-module. If M[X] is a Noetherian R[X]-module, then the following conditions hold.

- (1) There exists an element $e \in R$ such that em = m for all $m \in M$.
- (2) If $\operatorname{ann}_R(M) = (0)$, then R contains the identity and M is a unitary R-module.

Proof. (1) Suppose that M[X] is a Noetherian R[X]-module. Then by Lemma 2(1), M is a Noetherian R-module; so $M = \langle m_1, \ldots, m_n \rangle$ for some $m_1, \ldots, m_n \in M$. By Lemma 2(2), for each $i = 1, \ldots, n$, there exists an element $r_i \in R$ such that $r_i m_i = m_i$. Let $e_1 = r_1 + r_2 - r_1 r_2$ and for each $i \in \{2, \ldots, n-1\}$, let $e_i = e_{i-1} + r_{i+1} - e_{i-1} r_{i+1}$. Then $e_1 m_i = m_i$ for all i = 1, 2. Suppose that there exists an index $k \in \{1, \ldots, n-2\}$ such that $e_k m_i = m_i$ for all $i \in \{1, \ldots, k+1\}$. Then we have

$$e_{k+1}m_i = (e_k + r_{k+2} - e_k r_{k+2})m_i$$

= $e_k m_i + r_{k+2}m_i - e_k r_{k+2}m_i$
= m_i

for all $i = 1, \ldots, k + 1$. Also, we obtain

$$e_{k+1}m_{k+2} = (e_k + r_{k+2} - e_k r_{k+2})m_{k+2}$$

= $e_k m_{k+2} + r_{k+2}m_{k+2} - e_k r_{k+2}m_{k+2}$
= m_{k+2} .

Therefore $e_{k+1}m_i = m_i$ for all i = 1, ..., k+2. Hence by the induction, $e_{n-1}m_i = m_i$ for all i = 1, ..., n. Let $m \in M$. Then we have

$$m = s_1 m_1 + \dots + s_n m_n + \ell_1 m_1 + \dots + \ell_n m_n$$

for some $s_1, \ldots, s_n \in R$ and $\ell_1, \ldots, \ell_n \in \mathbb{Z}$. Thus we obtain

$$e_{n-1}m = e_{n-1}(s_1m_1 + \dots + s_nm_n + \ell_1m_1 + \dots + \ell_nm_n)$$

= $s_1e_{n-1}m_1 + \dots + s_ne_{n-1}m_n + \ell_1e_{n-1}m_1 + \dots + \ell_ne_{n-1}m_n$
= $s_1m_1 + \dots + s_nm_n + \ell_1m_1 + \dots + \ell_nm_n$
= $m.$

(2) Let a be any element of R. By (1), there exists an element $e \in R$ such that em = m for all $m \in M$; so aem = am for all $m \in M$, which indicates that (ae - a)m = 0 for all $m \in M$. Therefore $(ae - a)M = \{0\}$. Since $\operatorname{ann}_R(M) = (0)$, ae - a = 0. Hence ae = a. Thus e is the identity of R, which also shows that M is a unitary R-module.

As an immediate consequence of Theorems 1 and 3(2) and Lemma 2(1), we have

Corollary 4. Let R be a commutative ring and let M be an R-module with $\operatorname{ann}_R(M) = (0)$. Then the following conditions are equivalent.

- (1) R contains the identity and M is a Noetherian unitary R-module.
- (2) M[X] is a Noetherian R[X]-module.

By applying M = R to Theorem 3(1), we regain

Corollary 5. ([3, Theorem]) Let R be a commutative ring. If R[X] is a Noetherian ring, then R contains the identity.

We next give two examples which show that the converse of Theorem 3(2) is not true in general and the annihilator condition in Theorem 3(2) is essential.

Example 6. Let $M = \{0, 2, 4\}$ be a \mathbb{Z}_6 -submodule of \mathbb{Z}_6 . Then \mathbb{Z}_6 contains the identity and M is a unitary \mathbb{Z}_6 -module. Note that $\mathbb{Z}_6[X]$ is a Noetherian $\mathbb{Z}_6[X]$ -module by Theorem 1 (or [2, Chapter 7, Exercise 10]) and M[X] is a $\mathbb{Z}_6[X]$ -submodule of $\mathbb{Z}_6[X]$. Hence M[X] is a Noetherian $\mathbb{Z}_6[X]$ -module. However, $\operatorname{ann}_{\mathbb{Z}_6}(M) = \{0, 3\}$.

Example 7. Let $R = \{0, 2, 4, 6, 8, 10\}$ be a subring of \mathbb{Z}_{12} and let $M = \{0, 4, 8\}$ be an R-submodule of \mathbb{Z}_{12} . Then R is a commutative ring without identity and M is a nonunitary R-module with $\operatorname{ann}_R(M) = \{0, 6\}$. Also, 4m = m for all $m \in M$. Finally, M[X] is a Noetherian R[X]-module. (To see this, suppose to the contrary that M[X] is not a Noetherian R[X]-module. Then there exists an R[X]-submodule N of M[X] which is not finitely generated. Let f_1 be a nonzero element of least degree in N. Then $\langle f_1 \rangle \subseteq N$; so there exists an element f_2 of least degree in $N \setminus \langle f_1 \rangle$. For all i = 1, 2, let a_i be the leading coefficient of f_i and let d_i be the degree of f_i . Then $d_1 \leq d_2$. If $a_1 = a_2 = 4$ or $a_1 = a_2 = 8$, then we let $g = f_2 - (4X^{d_2-d_1})f_1$. Then $g \in N \setminus \langle f_1 \rangle$ and deg $(g) < \deg(f_2)$. This is a contradiction to the choice of

 f_2 . If $a_1 = 4$ and $a_2 = 8$, then we let $g = f_2 - (2X^{d_2-d_1})f_1$. Then $g \in N \setminus \langle f_1 \rangle$ and $\deg(g) < \deg(f_2)$. This is impossible because of the choice of f_2 . Similarly, if $a_1 = 8$ and $a_2 = 4$, then we let $g = f_2 - (2X^{d_2-d_1})f_1$. Then $g \in N \setminus \langle f_1 \rangle$ and $\deg(g) < \deg(f_2)$. This is also absurd because of the minimality of the degree of f_2 in $N \setminus \langle f_1 \rangle$. Hence M[X] is a Noetherian R[X]-module.)

Let R be a commutative ring and let M be an R-module. Then the Nagata's idealization of M in R (or the trivial extension of R by M) is a commutative ring

$$R(+)M := \{(r,m) \mid r \in R \text{ and } m \in M\}$$

with usual addition and multiplication defined by $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ for all $(r_1, m_1), (r_2, m_2) \in R(+)M$. It is routine to check that (R(+)M)[X] is isomorphic to R[X](+)M[X] (cf. [1, Corollary 4.6(1)]). It was shown that if R contains the identity and M is a unitary R-module, then R(+)M is a Noetherian ring if and only if R is a Noetherian ring and M is finitely generated [1, Theorem 4.8] (or [5, Corollary 3.9]).

Corollary 8. Let R be a commutative ring and let M be an R-module. If R[X](+)M[X] is a Noetherian ring, then R contains the identity and M is a unitary R-module.

Proof. Suppose that R[X](+)M[X] is a Noetherian ring. Since R[X](+)M[X] is isomorphic to (R(+)M)[X], (R(+)M)[X] is a Noetherian ring. Hence by Corollary 5, R(+)M contains the identity.

Let (a, n) be the identity of R(+)M. For each $r \in R$, (a, n)(r, 0) = (r, 0); so ar = r. Thus a is the identity of R. Let $m \in M$. Then (a, n)(0, m) = (0, m); so am = m. Thus M is a unitary R-module.

Acknowledgements. The author sincerely thanks the referee for several valuable comments. This research was supported by Kyungpook National University Research Fund, 2023.

References

- D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1(2009), 3–56.
- [2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Series in Math., Westview Press, 1969.
- [3] R. W. Gilmer, If R[X] is Noetherian, R contains an identity, Amer. Math. Monthly, 74(1967), 700.
- [4] I. Kaplansky, *Commutative Rings*, Polygonal Publishing House, Washington, New Jersey, 1994.
- [5] J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218(2014), 1075–1080.