• Title/Summary/Keyword: Quarter-car

Search Result 69, Processing Time 0.03 seconds

Control of Active Suspension System Considering Wheel-Hop (차륜 진동을 고려한 능동 현가계 제어)

  • 이동락;한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.420-424
    • /
    • 1994
  • In this paper, an active suspension system considering the wheel hop is studied for a quarter car model. A LQ controller controls an active suspension system in which a vibration absorber is attached to the wheel axis. The vibration absorber is adopted to reduce the vibration near the natural frequency of the unsprung mass, and the LQ controller is used to control the vibration near the natural frequency of the sprung mass. The perfomance of the control system considering the wheel hop is compared with that of a LQ control system.

  • PDF

Control of Active Suspension System by Using H$\infty$ Theory

  • Nguyen, Tan-Tien;Nguyen, Van-Giap;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • This paper presents a control of active suspension for quarter car model with two degree of freedom by using H$\infty$ method. Absolute velocity of car body is measured for feedback. The system parameter variations are treated with multiplicative uncertainty model. Simulation results show that the H$\infty$ control provides good trade-off between ride quality, suspension packaging and road holding constraints. The experiment with a front wheel suspension system was done to verify the simulation results.

  • PDF

A Study on the Vehicle Dynamic Characteristic of Displacement Sensitive Shock Absorber (변위감응형 충격흡수기의 차량 동력학적 특성에 관한 연구)

  • 이춘태;곽동훈;정봉호;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.187-195
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and ride comfort. The displacement sensitive shock absorber has two modes of damping force (i.e. soft and hard) according to the position of piston. In this study, a mathematical nonlinear dynamic model is introduced to predict the performance of displacement sensitive shock absorber. Especially in this paper, the transient zone is considered and the simulation result is well fit with experimental data. And the vehicle dynamic characteristic of displacement sensitive shock absorber is presented using quarter car simulation model. The simulation results of frequency response are compared with passive shock absorber.

Durability Assessment of a Control Arm Using 1/4 Car Test (1/4차량 시험을 통한 상부 컨트롤 암의 내구성 평가)

  • Ha, Min-Soo;Son, Hwan-Jung;Kim, Jong-Kyu;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-20
    • /
    • 2010
  • This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint and durability criteria. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH. The durability assessment is obtained by a index of fatigue durability and trial & error method, MSC. Fatigue program.

Compliance Effect Modeling based on Quasi-static Analysis for Real-time Multibody Vehicle Dynamics (실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링)

  • Jeong, Wan-Hee;Ha, Kyoung-Nam;Kim, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1003-1008
    • /
    • 2007
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems. Full car bump run simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.

  • PDF

Compliance Effect Modeling Based on Quasi-Static Analysis for Real-Time Multibody Vehicle Dynamics (실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Ha, Kyoung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2008
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems are performed. Full car bump run simulations and fish hook handling test simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.

Control simulation of MR damper for a cruise bus including the virtual dynamic damper (가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션)

  • Park, S.J.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.

Control of an Active Vehicle Suspension Using Electromagnetic Motor

  • Kim, Woo-Sub;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.282-285
    • /
    • 2003
  • Two criteria of good vehicle suspension performance are typically their ability to provide good road handling and increased passenger comfort. So far, The existing active vehicle suspension uses pneumatic and hydraulic actuators that enhance road handling and passenger comfort. But these kinds of actuators have nonlinear characteristic less than an electromagnetic motor. In this research, we are trying to examine the feasibility and the experiment of an active vehicle suspension using electromagnetic motor in order to enhance the ride quality because existing active vehicle suspension using active power sources such as compressors, hydraulic pumps has nonlinear characteristic. Active vehicle suspension using electromagnetic motor will have the ability to behave differently on smooth and rough roads. The desired response should be soft in order to enhance ride comfort, but when the road surface is too rough the suspension should stiffen up to avoid hitting its limits.

  • PDF

차량 능동 현가장치의 혼합제어기 설계

  • 한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In ground vehicles, the increasing demand for safety and ride comfort which are trade-off relation, especially at high speeds, has led to the development od actively controlled suspensions. The LQG/LTR controller can be used to design a robust feedback control system that deals with disturbance rejection properties as well as insensitivity to modelling errors and sensor noise. And when the disturbance can not be measured but is limited within a certain frequency range, a bandpass feedback to eliminate the disturbance response can be used. In this paper, hybrid controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the hybrid control system is compared with that of an LQG/LTR controlled system.

  • PDF

Robust $H_{\infty}$ Controller Design for Performance Improvement of Semi-Active Suspension System (반능동 현가장치의 성능향상을 위한 견실 $H_{\infty}$ 제어기 설계)

  • 정승권
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.85-90
    • /
    • 2000
  • In this paper, a robust $H_{\infty}$ a controller for semi-active suspension system is proposed. For the improvement of ride quality, the robust $H_{\infty}$ controller is designed to satisfy robust stability and road disturbance attenuation using an $H_{\infty}$ control design procedure. The performances of the design controller for some road conditions are evaluated by computer simulation and finally these simulation results show the usefulness and applicability of the proposed robust $H_{\infty}$ controller.

  • PDF