Abstract
This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint and durability criteria. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH. The durability assessment is obtained by a index of fatigue durability and trial & error method, MSC. Fatigue program.