• Title/Summary/Keyword: Quantitative X-ray diffraction analysis

Search Result 70, Processing Time 0.025 seconds

Illite Polytypes: The Characteristics and the Application to the Fault Age Determination (일라이트 폴리타입: 그 특성과 단층 활동연대 결정에의 활용)

  • Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The 1M and $2M_1$ stacking sequences are the most frequently encountered in the illite species among the possible 6 polytypes. The $1M_d$, derived from the 1M polytype which exhibits a variable degree of disorder in the stacking sequence, is also observed in illite samples. In this paper, the author introduces and reviews the theoretical background of the quantitative analysis method of illite polytypes, and considers the possibility to determine the fault age and its reactivation age using K/Ar age-dating based on the quantification of illite polytypes in the fault system. For the increase of the accuracy and precision of the illite age analysis method, the occurrence, identification, and mineralogical characterization of illite polytypes should be defined in detail. The broadening effect of (hkl) reflections, due to disordering of 1M polytype and the presence of I/S minerals with expandability, are also considered as the main parameters controlling the quantification of illite polytypes using the WILDFIRE(C)simulation.

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy (밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghoon;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Olivine Synthesis Using Stainless Steel Tube (스테인리스강관을 이용한 감람석 합성)

  • Gi Young Jeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.337-343
    • /
    • 2023
  • Olivine is a complete solid solution of fayalite and forsterite that is abundant in Earth and extraterrestrial materials such as rocky planets, meteorites, asteroids, and interplanetary dust. Due to the wide range of olivine compositions, diverse olivine standards are required for quantitative mineralogical analysis of olivine-bearing materials. Olivine standards were synthesized using an electric furnace and stainless steel tubes at temperatures ranging from 1000~1100 ℃. Overall, olivine was synthesized covering the full range of composition, with some synthetic impurities and unreacted material. The synthesized olivine showed a linear increase in the unit cell dimension in proportion to the molar ratio of fayalite in the starting materials, and the diffraction intensity was consistent with that of natural olivine. However, iron-rich synthetic olivine samples tend to have a higher content of impurity, suggesting that not all synthetic olivine can be used as a standard material yet, and improvements in the synthesis process, such as using high purity starting materials and control of reaction time and temperature, are required.

Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition (황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.

Petrographic Study of Mn-bearing Gondite (Birimian) of Téra Area in the Leo-Man Shield (West African Craton) in Niger.

  • Hamidou GARBA SALEY;Moussa KONATE;Olugbenga Akindeji OKUNLOLA
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.25-39
    • /
    • 2024
  • The Téra manganese deposit represents the most significant manganese mineralization discovered in Niger up today. The main host rocks of this ore are gondites, which are a garnet and quartz rich metamorphic rocks. The supergene weathering developed an alteration profile on these gondites. This study aims to identify the mineralogical composition of gondites and associated rocks, in order to highlight the origine of rocks and the manganese enrichment. The methodological approach adopted involved a field study followed by polarizing microscopic analysis using transmitted and reflected lights. Additionally, quantitative X-ray diffraction (XRD) analysis was performed to assess the manganese ore minerals present in the gondite and associated rocks, including mica schists, amphibolites, and quartzites. The petrographic study revealed a paragenesis characterized by the presence of kyanite, staurolites, garnets and plagioclases that are generally poikiloblasts with quartz and opaque minerals inclusions, emphasizing the internal schistosity which is planar, helicitic or microfolded. These features indicate a prograde metamorphism until high-pressure amphibolite facies conditions. These conditions are followed by greenschist facies conditions marked by calcite, epidote, muscovite, chlorite and muscovite assemblage which emphasizes the vertical tectonics. Depending on the alteration process, the manganese ore exhibit a granular texture at the bottom of the gondite hills, transitioning to a colloform texture towards the top, passing through the epigenization and replacement texture. The XRD analysis further revealed that the studied rocks originated from a volcano-sedimentary complex, characterized by alternating marly, arenaceous and pelitic sequences associated with submarine exhalations.

DIFFERENCE OF CALCIUM FLUORIDE FORMATION BETWEEN THE ENAMEL AND DENTIN AFTER FLUORIDE APPLICATION IN VITRO (불소적용시 법랑질과 상아질에서 불화칼슘형성의 차이에 관한 실험적 연구)

  • Kim, Jae-Gon;Kweon, Seon-Ja;Yun, Hyun-Du;An, Soo-Hyeon;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.209-224
    • /
    • 1998
  • The purpose of this study was to compare the amount of calcium fluoride deposited on the enamel and dentin surface and to obtain information on the morphological change and crystallographic details of mineral deposition after 12,000ppm APF application in vitro. The bovine enamel and dentin blocks were randomly assigned to eight groups according to artificial caries lesion formation and difference of fluoride application time. The fluoride concentration and morphological characteristics on the treated enamel and dentin surface were investigated by using fluoride quantitative analysis and SEM. The powdered enamel and dentin of the intact bovine incisors were prepared for the X-ray diffraction analysis. The following results were obtained. 1. The amounts of KOH-soluble fluoride on the carious enamel and dentin surface after 24h APF application were higher than after only 5min APF application(p<0.05), but in the case of the sound enamel and dentin surface were similar after 5min and 24h application (P>0.05). The fluoride content was highly increased in the carious dentin as compared with sound dentin after APF application(P<0.05). 2. The carious enamel surface after APF application, the demineralized enamel surface were recovered a more dense enamel surface and precipitation of crystal was observed a distintive surface layer of spherical globules of about 1 m diameter. In the case of the fluorided carious dentin surface, precipitation of calcium fluoride-like material was deposited both inside the dentinal tubules as well as in the intertubular regions. 3. The crystallographic structure of powdered enamel and dentin after 24h APF application had large crystallities of apatite and CaF2 diffraction peaks in the enamel as compared with dentin. The diffraction data collected from the 27.50-29.50(2) angular range of the powdered enamel, the (105) apatite, (225) apatite and (111) CaF2 peaks of the enamel crystallities were detected after 24h APF application.

  • PDF

Clay Mineral Distribution and Characteristics in the Southeastern Yellow Sea Mud Deposits (황해 남동 이질대 퇴적물의 점토광물분포 및 특성)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.163-173
    • /
    • 2012
  • In this study, we determined the relative clay mineral composition of 51 surface sediments from SEYSM (Southeastern Yellow Sea Mud) (northern part 25, southern part 26) and 30 river sediments inflow to Yellow Sea using the semi-quantitative X-ray diffraction analyses. In addition to we analyzed illite characteristics of the same samples. The clay-mineral assemblage is composed of illite (61~75%), chlorite (14~24%), kaolinite (9~14%), and smectite (1~7%), in decreasing order. The average composition of each clay mineral is not different from northern part to southern part of SEYSM except a little higher kaolinite and lower smectite content in northern part. Smectite content generally has reverse relationship with illite content. Mineralogical characteristics of illite such as illite crystallinity index also is not different between two areas and show very narrow range (0.18~0.24 ${\Delta}^{\circ}2{\theta}$). Our results reveal that clay mineral composition and illite characteristics are nearly the same between northern and southern part of SEYSM. Characteristics of surface sediments in SEYSM is closer to Korean river sediments than Chinese Hanghe sediments, however it is necessary to investigate further study including Yangtze river sediments. This study conclude that most of surface sediments in SEYSM attribute to the supply of considerable amount of sediments from the nearby Korean rivers. The large sediment budget and high accumulation rate in the SEYSM can be explained by erosion and reworking of surface sediments in this area. Tidal and regional current system around SEYSM might contribute these erosional and depositional regimes.

A study on the Separation/recovery of Rare Earth Elements from Wast Permanent Magnet by a Fractional Crystallization Method and Sulfuric Acid Leaching (폐영구자석 황산침출과 분별결정법에 의한 희토류 분리·회수에 대한 연구)

  • Kim, Dae-Weon;Kim, Hee-Seon;Kim, Boram;Jin, Yun-Ho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • Nd-Fe-B waste permanent magnet contains about 20~30% rare earth elements and about 60~70% iron elements, and the rare earth and iron components were recovered through sulfuric acid leaching and fractional crystallization. Oxidation roasting was not performed for separation and recover of the rare earth and iron elements. The leaching characteristics were confirmed by using as variables the sulfuric acid concentration and the mineral solution concentration ratio. Sulfuric acid leaching was carried out for 3 hours for each sulfuric acid concentration. The leached solid phase was characterized for its crystalline phase, composition, and quantitative components by XRD and XRF analysis, and the filtrate was analyzed for components by ICP analysis. With sulfuric acid leaching at 3M sulfuric acid concentration, neodymium compounds were formed, the iron content was the least, and the recovery rate was high. After the filtrate remaining after sulfuric acid leaching was subjected to fractional crystallization through evaporation and concentration, the neodymium component was found to be concentrated 7.0 times and the iron component 2.8 times. In this study, the recovery rate of waste permanent magnets through sulfuric acid leaching and a fractional crystallization method without an oxidation and roasting process was confirmed to be about 99.4%.

Semi-quantitative Analysis of Manganese Oxide Mineral in Manganese Nodule From the East Siberian Sea (동시베리아해 망가니즈단괴의 산화망가니즈광물 반정량 분석)

  • Yu, Hye Jin;Shin, Eun Ju;Koo, Hyo Jin;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.427-437
    • /
    • 2020
  • Manganese nodules, which are evaluated as potential metal resources, have been found in the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans. Manganese nodules exhibit strong variations in the morphology, internal texture, chemical composition and mineralogy as they grow. The relationship between the texture and chemical elemental composition during the growth process is well documented, but the mineral composition variation during the growth process is not. Because the manganese oxide minerals in nodules are fine-grained and poorly crystalline, quantitative analysis for the mineral composition is challenging for the bulk nodule sample. This study investigated the internal texture and Mn-oxide mineral composition of manganese nodules obtained from the East Siberian Sea. Semi-quantitative analysis was attempted for three main Mn-oxide minerals constituting the manganese nodules (i.e., todorokite, buserite and birnessite) using the peak area ratio of X-ray diffraction analysis graphs. In the East Siberian Sea manganese nodules, birnessite is more abundant than buserite or todorokite, and no correlation is found between the mineral composition and the internal texture. Instead a correlation is found between the relative content of todorokite and the lamellae depth. The todorokite content tends to increase from the surface to the core of the nodules, which can be attributed to a recrystallization process or difference in the growth rate within the nodule. This study shows that semi-quantitative analysis of manganese oxide minerals using the peak area ratio is useful in the mineralogical study of manganese nodules.

New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation

  • Zhou, Wei;Huang, Hai;Zhu, Haiyan;Zhou, Pei;Shi, Xunlong
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.199-207
    • /
    • 2018
  • Background: Ginseng is a well-known traditional Chinese medicine that has been widely used in a range of therapeutic and healthcare applications in East Asian countries. Microbial transformation is regarded as an effective and useful technology in modification of nature products for finding new chemical derivatives with potent bioactivities. In this study, three minor derivatives of ginsenoside compound K were isolated and the inducing effects in the Wingless-type MMTV integration site (Wnt) signaling pathway were also investigated. Methods: New compounds were purified from scale-up fermentation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 through repeated silica gel column chromatography and high pressure liquid chromatography. Their structures were determined based on spectral data and X-ray diffraction. The inductive activities of these compounds on the Wnt signaling pathway were conducted on MC3T3-E1 cells by quantitative real-time polymerase chain reaction analysis. Results: The structures of a known 3-keto derivative and two new dehydrogenated metabolites were elucidated. The crystal structure of the 3-keto derivative was reported for the first time and its conformation was compared with that of ginsenoside compound K. The inductive effects of these compounds on osteogenic differentiation by activating the Wnt/b-catenin signaling pathway were explained for the first time. Conclusion: This study may provide a new insight into the metabolic pathway of ginsenoside by microbial transformation. In addition, the results might provide a reasonable explanation for the activity of ginseng in treating osteoporosis and supply good monomer ginsenoside resources for nutraceutical or pharmaceutical development.