Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition

황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성

  • Moon, Dong-Hyeok (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yi, Hi-Il (Marine Geoenvironment Research Division, Korea Ocean Research and Development Institute) ;
  • Shin, Dong-Hyeok (Marine Geoenvironment Research Division, Korea Ocean Research and Development Institute) ;
  • Shin, Kyung-Hoon (Dept of Environmental Marine Sciences, Hanyang University) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 문동혁 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 이희일 (한국해양연구원 해양환경특성연구사업단) ;
  • 신동혁 (한국해양연구원 해양환경특성연구사업단) ;
  • 신경훈 (한양대학교 해양환경과학) ;
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Published : 2008.09.30

Abstract

We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.

해양퇴적물 전체 시료 내에 존재하는 각 점토광물의 함량비(전대광물조성)와 점토광물들만을 100%로 환산했을 때 각 점토광물의 함량비(상대광물조성)를 구한 후, 지도에 도시하여 그 분포 양상을 비교하여 보았다. 시료는 한국해양연구원의 2001년 황해 2차 탐사에서 채취된 86개 표층 퇴적물 시료를 사용하였으며, 정량X선회절분석법을 이용하여 광물조성을 구하였다. 황해 표층 퇴적물은 주구성광물(석영 평균 44.7%, 사장석 15.9%, 알카리장석 13.9%. 각섬석 2.8%), 점토광물(일라이트 15.3%, 녹니석 2.6%, 카올리나이트 1%), 탄산염광물(방해석 1.7%, 아라고나이트 0.6%) 등으로 구성되어 있다. 점토광물들은 대체로 황해의 가장자리에 적은 분포를 보이고 산동반도 남동쪽에서 제주도 남서쪽을 연결하는 해역에서 높았으며, 세립질 퇴적물의 분포와 거의 일치하는 경향을 나타낸다. 점토광물들의 합을 100으로 가정하고 구한 점토광물의 평균 상대광물조성은 일라이트, 녹니석, 카올리나이트가 각각 80.3%, 14.9%, 4.8%이다. 점토광물들의 상대광물조성을 이용하여 나타낸 분포 양상은 절대광물 조성을 이용하여 구한 그것과 많은 차이를 보이며, 점토광물을 많이 포함하고 있는 세립질 퇴적물의 분포경향과도 정의 상관관계를 보이지 않는다. 그러므로 점토광물들만을 대상으로 상대광물조성을 구하여 퇴적물 근원지 해석 등에 이용할 때에는 상당히 신중을 기한 필요가 있는 것으로 판단된다.

Keywords

References

  1. 문동혁, 이희일, 신동혁, 신경훈, 김순오, 조현구 (2007) 황해 표층 퇴적물의 X선 광물정량분석; 2001년 황해 2차 탐사 시료. 한국광물학회지, 20, 203-212
  2. 최진용, 김석윤 (1998) 한반도 주변해역 점토광물의 함 량과 분포. Jour. Korean Earth Science Society, 19, 524-532
  3. Aoki, S. (1976) Clay mineral distribution in sediments of the gulf of thailand and the south china sea. Journal of the Oceanographical Society of Japan, 32, 169-174 https://doi.org/10.1007/BF02107271
  4. Biscaye, P.E. (1965) Mineralogy and sedimentation of clay minerals in recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803-832 https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  5. Eberl, D.D. (2003) User guide to RockJock- A program for determining quantitative mineralogy from X-ray diffraction data. U.S.Geol.SUrv. Open-File Report, OF 03-78, 40p
  6. Eberl, D.D. (2004) Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance. Amer. Miner., 89, 1784-1794 https://doi.org/10.2138/am-2004-11-1225
  7. Griffin, J.J., Windom, H., and Goldberg, E.D. (1968) The distribution of clay minerals in the world dceans. Deep-Sea Res., 15, 433-469
  8. Hume, T.M. and Nelson, C.S. (1986) Distribution and origin of clay minerals and surficial shelf sediments, Western North Island, New Zealand. Mar. Geol., 69, 289-308 https://doi.org/10.1016/0025-3227(86)90044-7
  9. Karlin R. (1980) Sediment sources and clay mineral distributions off the oregon coast. J. Sediment. Petrol., 50, 543-560
  10. Khim, B.K. and Park, Y.A. (1992) Smectite as a possible- indicative clay mineral in the Yellow Sea. Geo-Marine Letters, 12, 228-231 https://doi.org/10.1007/BF02091843
  11. Park, Y.A., Kim, S.C., and Choi, J.Y. (1986) The distribution and transportation of fine-grained sediments on the inner continental shelf off the Kuem River estuary, Korea. Continental Shelf Research, 5, 499-519 https://doi.org/10.1016/0278-4343(86)90073-7
  12. Park, Y.A. and Khim, B.K. (1992) Origin and dispersal of recent clay minerals in the Yellow Sea. Marine Geology, 104, 205-213 https://doi.org/10.1016/0025-3227(92)90095-Y
  13. Rateev, M.A., Gorbunova, Z.N., Lisitzin, A.P., and Nosov, G.I. (1968) Climatic zonality of the argillaceous minerals in the world ocean sediments. Okeanol., Akad. Nauk S.S.S.R., 18, 283-311
  14. Rateev, M.A., Gorbunova, Z.N., Lisitzin, A.P., and Nosov, G.I. (1969) The distribution of clay minerals in the oceans. Sedimentology, 13, 21-43 https://doi.org/10.1111/j.1365-3091.1969.tb01119.x
  15. Taylor, J.C. (1991) Computer program for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6, 2-9 https://doi.org/10.1017/S0885715600016778
  16. Vogt, C., Lauterjung, J. and Fischer, R.X. (2002) Investigation of the clay fraction of the clay minerals society reference clays. Clay and Clay Minerals, 50, 388-400 https://doi.org/10.1346/000986002760833765
  17. Windom, H.L. (1976) Lithogenous Material in Marine Sediments. Academic Press, New York, London 5, 103-135
  18. Yi, Hi-il, Chun, J.H, Shin I.C., and Shin, D.H. (2004) The Records of origin and transport offromthe past to the present in the Yellow Sea. Journal of the Korean Society of Oceanography, 39, 96-106
  19. Yin, J., Okada, H., and Labeyrie, L. (1987) Clay mineralogy of slope sediments around the japanese islands. Geosci. Rep. Shizuoka Univ., 13, 41-65