DOI QR코드

DOI QR Code

Olivine Synthesis Using Stainless Steel Tube

스테인리스강관을 이용한 감람석 합성

  • Gi Young Jeong (Department of Earth and Environmental Sciences, Andong National University)
  • 정기영 (안동대학교 지구환경과학과)
  • Received : 2023.12.06
  • Accepted : 2023.12.18
  • Published : 2023.12.30

Abstract

Olivine is a complete solid solution of fayalite and forsterite that is abundant in Earth and extraterrestrial materials such as rocky planets, meteorites, asteroids, and interplanetary dust. Due to the wide range of olivine compositions, diverse olivine standards are required for quantitative mineralogical analysis of olivine-bearing materials. Olivine standards were synthesized using an electric furnace and stainless steel tubes at temperatures ranging from 1000~1100 ℃. Overall, olivine was synthesized covering the full range of composition, with some synthetic impurities and unreacted material. The synthesized olivine showed a linear increase in the unit cell dimension in proportion to the molar ratio of fayalite in the starting materials, and the diffraction intensity was consistent with that of natural olivine. However, iron-rich synthetic olivine samples tend to have a higher content of impurity, suggesting that not all synthetic olivine can be used as a standard material yet, and improvements in the synthesis process, such as using high purity starting materials and control of reaction time and temperature, are required.

감람석은 철감람석과 마그네슘감람석의 완전고용체로서 암석형 행성, 운석, 소행성, 행성간 먼지 등에 풍부하게 함유되어 있다. 감람석은 조성범위가 매우 넓기 때문에 감람석 함유 시료의 광물정량분석을 위해서는 다양한 조성의 감람석 표준물질을 구비해야 한다. 감람석 표준물질을 전기로와 스테인리스강관을 이용하여 1000~1100 ℃ 범위의 온도에서 합성하였다. 엑스선회절분석에 의하면 시료에 따라 합성불순물과 미반응물이 있으나 전반적으로 전조성 범위를 포함하는 감람석이 합성되었다. 합성 감람석들은 출발물질의 철감람석 몰비에 비례하여 단위포 치수가 선형으로 증가하는 경향을 보였으며, 회절강도도 자연산 감람석과 부합하였다. 그러나 철 함량이 높은 합성 감람석에서 불순물 함량이 증가하는 경향이 있어 아직 모든 합성 감람석을 표준물질로 사용할 수 없으며, 출발물질의 고순도화, 반응시간 및 온도 조절 등의 합성과정 개선이 필요하다.

Keywords

Acknowledgement

원고의 부족한 점을 지적하시고 개선 방향을 제시하여 주신 두 분의 익명 심사위원님들께 감사드립니다.

References

  1. Brearley, A.J. and Jones, R.H., 1998, Chondritic meteorites. Reviews in Mineralogy, 36, 3-1-398.
  2. Brindley, G.W. and Hayami, R., 1965, Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2. Philosophical Magazine, 12, 505-514. https://doi.org/10.1080/14786436508218896
  3. Di Cecco, V.E., Hyde, B.C., Tait, K.T. and Nicklin, R.I., 2022, Determination of olivine fayalite-forsterite composition in ordinary chondrites by X-ray diffraction. Meteoritics & Planetary Science, 57, 1-12.
  4. Dyar, M.D., Sklute, E.C., Menziez, O.N. and Bland, P.A., 2009, Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approach. American Mineralogist, 94, 883-898. https://doi.org/10.2138/am.2009.3115
  5. Fabian, D., Henning, T., Jager, C., Mutschke, H., Dorschner, J. and Wehrhan, O., 2001, Step toward interstellar silicate mineralogy VI. Dependence of crystalline olivine IR spectra on iron content and particle shape. Astronomy & Astrophysics, 378, 228-238. https://doi.org/10.1051/0004-6361:20011196
  6. Gaul, O.F., Griffin, W.L., O'Reilly, S.Y. and Pearson, N.J., 2000, Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters, 182, 223-235. https://doi.org/10.1016/S0012-821X(00)00243-0
  7. Hirakawa, N., Kebukawa, Y., Shibuya T., Ueda, H., and Kobayashi, K., 2023, Experimental synthesis of Fe-bearing olivine at near-solidus temperatures and its decomposition during longtime heating. Journal of Mineralogical and Petrological Sciences, 118, 1-10. https://doi.org/10.2465/jmps.220913
  8. Howard, K.T., Benedix, G.K., Bland, P.A. and Cressey, G., 2009, Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica Cosmochimica Acta, 73, 4576-4589. https://doi.org/10.1016/j.gca.2009.04.038
  9. Kim, D., Lee, H., Lee, W., Kim, J., Oh, J., Song, J.-H., Jung, H. and Stuart, F.M., 2021, Helium isotopes and olivine geochemistry of basalts and mantle xenoliths in Jeju Island, South Korea: Evaluation of role of SCLM on the Cenozoic intraplate volcanism in East Asia. Lithos, 390-391, 106123. doi.org/10.1016/j.lithos.2021.106123.
  10. Mitchell, M.B.D., Jackson, D. and James, P.F., 1998, Preparation and characterisation of forsterite (Mg2SiO4) aerogels. Journal of Non-Crystaline Solids, 225, 125-129. https://doi.org/10.1016/S0022-3093(98)00017-9
  11. Ni, S., Chou, L. and Chang, J., 2007, Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceramics International, 33, 83-88. https://doi.org/10.1016/j.ceramint.2005.07.021
  12. Pinto, R.G., Yaremchenko, A.A., Baptista, M.F., Tarelho, L.A.C. and Frade, J.R., 2019, Synthetic fayalite Fe2SiO4 by kinetically controlled reaction between hematite and silicon carbide. Journal of the American Ceramic Society, 102, 5090-5102. https://doi.org/10.1111/jace.16412
  13. Schwab, R.G. and Kustner, D., 1977, Prazisionsgitterkonstantenbestimmung zur festlegung rotgenographischer Bestimmungskurven fur synthetische Olivin der Mischkristallreihe Forsterit-Fayalit. Neues Jahbuch Fur Mineralogie-Monatschefte, 205-215.
  14. Taylor, J.C. and Hinczak, I., 2003, Rietveld made easy. Sietronics Pty Limited. Australia.