DOI QR코드

DOI QR Code

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea

충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구

  • Ijeung Kim (Critical Minerals Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Sang-Mo Koh (Critical Minerals Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Otgon-Erdene Davaasuren (Critical Minerals Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Gi Moon Ahn (Critical Minerals Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chul-Ho Heo (Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bum Han Lee (Critical Minerals Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 김이정 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 고상모 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 오트곤-에르덴 다바슈렌 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 안기문 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 허철호 (한국지질자원연구원 광물자원연구본부) ;
  • 이범한 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터)
  • Received : 2023.12.01
  • Accepted : 2023.12.18
  • Published : 2023.12.30

Abstract

We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

핵심 광물인 니켈의 국내 확보를 위해 충남 유구지역 초염기성암에 대한 니켈 잠재성 및 성인 연구를 수행하였다. 경기육괴의 남서쪽에 위치한 유구 초염기성암은 첨정석 감람암으로, 경계부를 따라 사문석화가 강하게 진행되어 있다. 사문석화작용으로 감람석은 안티고라이트 및 크리소타일로, 니켈 황화광물인 펜틀란다이트는 밀러라이트 및 어웨루이트로 변질되었다. 사문석은 일부 강한 엽리를보이며, 초염기성암 경계 및 유구편마암 면구조와 주로 평행하게 발달한다. 이는 초염기성암의 융기 과정 동안 편마암의 변성작용으로부터 공급받은 열수가 단층 경계를 따라 침투하여 사문석화된 것으로 해석된다. 유구 초염기성암의 기원은 심해저 페리도타이트이며 약 5~18% 정도의 부분 용융을 겪은 잔여물로 해석된다. 부화된 경희토류원소 및 Eu는 맨틀이 2차적인 교대변성작용을 겪었음을 암시한다. 이러한 지화학 결과는유구 감람암의 형성이 중생대 초기 북중국판과 남중국판의 대륙 충돌과 관련 있음을 시사한다. 유구 초염기성암 내 니켈은 0.17~0.21%로, 상당량이 감람석 및 사문석에 포함된다. 따라서 마그마 기원인 유구 초염기성암의 니켈 회수율을 높이기 위해 황화광물의 선광연구와 더불어 산화광물을 대상으로 하는 침출 연구가 요구된다.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부에서 지원한 한국지질자원연구원 기본사업(GP2023-004)으로 연구가 수행되었습니다. 세심하게 심사해주신 두 분의 심사위원 분들께 감사드립니다.

References

  1. Abdel-Halim, A. H., 2023, Hydrothermal alteration of Ni-rich sulfides in peridotites of Abu Dahr, Eastern Desert, Egypt: Relationships among minerals in the Fe-Ni-Co-O-S system, fO2 and fS2. American Mineralogist 108, 614-633. https://doi.org/10.2138/am-2022-8217
  2. Arai, S., 1994, Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology 113, 191-204. https://doi.org/10.1016/0009-2541(94)90066-3
  3. Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y.-I. and Hisada, K.-i., 2008, Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: Implications for its origin and hydration process. Island Arc 17, 485-501. https://doi.org/10.1111/j.1440-1738.2008.00633.x
  4. Baag, C. G. and Kim, K. S., 1962, The detailed Report of Magnetic Prospecting and S. P. Measurement at Hwan Sun Nickel mine. Geological Survey of Korea. Bulletin No. 5, 226-244.
  5. Barnes, S. J., Cruden, A. R., Arndt, N. and Saumur, B. M., 2016, The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits. Ore Geology Reviews 76, 296-316. https://doi.org/10.1016/j.oregeorev.2015.06.012
  6. Bhat, I. M., Ahmad, T. and Subba Rao, D. V., 2019, Geodynamic Significance of Cr-spinels from Ophiolite Mantle Peridotites of Northwestern Himalaya. Journal of the Geological Society of India 93, 657-662. https://doi.org/10.1007/s12594-019-1244-3
  7. Bodinier, J. L., Godard, M., 2003. Orogenic, Ophiolitic, and Abyssal peridotites. Treatiseon Geochemistry, Vol. 2. Elsevier, Amsterdam, 103-170.
  8. Chiang, Y. W., Santos, R., Audenaerde, A., Monballiu, A., Van Gerven, T. and Meesschaert, B., 2014, Chemoorganotrophic Bioleaching of Olivine for Nickel Recovery. Minerals 4, 553-564. https://doi.org/10.3390/min4020553
  9. Choi, S. H. and Kwon, S.-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baengnyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. Island Arc 14, 236-253. https://doi.org/10.1111/j.1440-1738.2005.00469.x
  10. Choi, S.-G., Kwon, S.-T., Ree, J.-H., So, C.-S. and Pak, S. J., 2005, Origin of Mesozoic gold mineralization in South Korea. Island Arc 14, 102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  11. Choi, S. H., Mukasa, S. B., Zhou, X.-H., Xian, X. H. and Andronikov, A. V., 2008, Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology 248, 40-61. https://doi.org/10.1016/j.chemgeo.2007.10.008
  12. Deschamps, F., Godard, M., Guillot, S. and Hattori, K., 2013, Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96-127. https://doi.org/10.1016/j.lithos.2013.05.019
  13. Jessup, A. C. and Mudd, G. M., 2008, Environmental sustainability metrics for nickel sulphide versus nickel laterite. 3rd International Conference on Sustainability Engineering and Science: Blueprints for Sustainable Infrastructure. Auckland, New Zealand.
  14. Kamenetsky, V., Crawford, A. and Meffre, S., 2001, Factors Controlling Chemistry of Magmatic Spinel: an Empirical Study of Associated Olivine, Cr-spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology 42, 655-671. https://doi.org/10.1093/petrology/42.4.655
  15. Keays, R. R. and Jowitt, S. M., 2013, The Avebury Ni deposit, Tasmania: A case study of an unconventional nickel deposit. Ore Geology Reviews 52, 4-17. https://doi.org/10.1016/j.oregeorev.2012.07.001
  16. Khedr, M. Z., Arai, S., Python, M. and Tamura, A., 2014, Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity. Gondwana Research 25, 1242-1262. https://doi.org/10.1016/j.gr.2013.05.010
  17. Kim S. E., 1982, Geology and Ore Depoists of Samkwang Nickel Mine. Geoscience and Mineral Resources 14, 85-128.
  18. Kim, S. E., Kim M. S., Kim, S. Y., Park, K. H. and Cho, J. D., 1980, On the Study of Geology, Ore Deposit and Geophysical Exploration for the Eum Seong Nickel Deposit. Korea research Institute of Geoscience and Mineral resources, Bulletin No. 16, 1-29.
  19. Kim, S. W., Oh, C. W., Williams, I. S., Rubatto, D., Ryu, I.-C., Rajesh, V. J., Kim, C.-B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  20. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S. W. and Ryu, I.-C., 2009, Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth and Planetary Science Letters 279, 340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  21. Laznicka, P., 2010, Giant Metallic Deposits Future Sources of Industrial Metals. Springer-Verlag, 732p.
  22. Lee, D.-W., 1999, Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Island Arc 8, 218-231. https://doi.org/10.1046/j.1440-1738.1999.00233.x
  23. Maier, W. D., 2005, Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. Journal of African Earth Sciences 41, 165-191. https://doi.org/10.1016/j.jafrearsci.2005.03.004
  24. Marsh, E. E., Anderson, E. D. and Gray, F., 2011, Ni-Co Laterites: a Deposit Model. Department of the Interior, U.S. Geological Survey 2011-1259 (9 p).
  25. Maury, R. C., Defant, M. J. and Joron, J.-L., 1992, Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360, 661-663. https://doi.org/10.1038/360661a0
  26. Naldrett, A., 2011, Fundamentals of magmatic sulfide deposits. Society of Economic Geologists 17, 1-50.
  27. Oh, C. W., Kim, S. W., Choi, S.-G., Zhai, M., Guo, J. and Sajeev, K., 2005, First Finding of Eclogite Facies Metamorphic Event in South Korea and Its Correlation with the Dabie-Sulu Collision Belt in China. The Journal of Geology 113, 226-232. https://doi.org/10.1086/427671
  28. Oh, C. W. and Kusky, T., 2007, The Late Permian to Triassic Hongseong-Odesan Collision Belt in South Korea, and Its Tectonic Correlation with China and Japan. International Geology Review 49, 636-657. https://doi.org/10.2747/0020-6814.49.7.636
  29. Okada, H. and Sakai, T., 1993, Nature and development of Late Mesozoic and early cenozoic sedimentary basins in southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 3-16. https://doi.org/10.1016/0031-0182(93)90102-O
  30. Park, H. I., 1960, A report on Drilling of the Sannae Nickel Mine at Toktong-ri, Sannae-myon, Namwon-gun, Chllapuk-to. Geological Survey of Korea, Bulletin No. 4, 3-37.
  31. Park, M. and Jung, H., 2017, Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics 709, 55-68. https://doi.org/10.1016/j.tecto.2017.04.017
  32. Santos, R., Audenaerde, A., Chiang, Y. W., Iacobescu, R., Knops, P. and Van Gerven, T., 2015, Nickel Extraction from Olivine: Effect of Carbonation Pre-Treatment. Metals 5, 1620-1644. https://doi.org/10.3390/met5031620
  33. Schwarzenbach, E. M., Vrijmoed, J. C., Engelmann, J. M., Liesegang, M., Wiechert, U., Rohne, R. and Plumper, O., 2021, Sulfide Dissolution and Awaruite Formation in Continental Serpentinization Environments and Its Implications to Supporting Life. Journal of Geophysical Research: Solid Earth 126, e2021JB021758.
  34. Seo, J., Choi, S. G., Oh, C. W., Kim, S. W. and Song, S. H., 2005, Genetic Implications of Two Different Ultramafic Rocks from Hongseong Area in the Southwestern Gyeonggi Massif, South Korea. Gondwana Research 8, 539-552. https://doi.org/10.1016/S1342-937X(05)71154-0
  35. Shi, L., Francis, D., Ludden, J., Frederiksen, A. and Bostock, M., 1998, Xenolith evidence for lithospheric melting above anomalously hot mantle under the northern Canadian Cordillera. Contributions to Mineralogy and Petrology 131, 39-53. https://doi.org/10.1007/s004100050377
  36. Sun, S.-s. and McDonough, W. F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  37. USGS, 2023, Mineral Commodity Summaries 2023. Washington, DC, USA.
  38. Wang, F. and Dreisinger, D., 2022, Carbon mineralization with concurrent critical metal recovery from olivine. Proceedings of the National Academy of Sciences 119, e2203937119.
  39. Whattam, S., Cho, M. and Smith, I., 2011, Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: Geochemical evidence for supra-subduction zone formation and extensive melt-rock interaction. Lithos 127, 599-618. https://doi.org/10.1016/j.lithos.2011.06.013
  40. Woo, Y.-K. and Lee, D.-W., 2001, Original Rocks of the Talc Ore Deposits and their Steatitization in the Yesan Area, Choongnam, Korea. Journal of the Korean Earth Science Society 22, 548-557.
  41. Woo, Y.-K. and Suh, M.-C., 2000, Petrological Study on the Ultramafic Rocks in Choongnam Area. Journal of the Korean earth science society 21, 323-336.
  42. Yang, J., Shi, R., Wu, C., Zhang, J., Liou, J. and Robinson, P., 2003, Ultrahigh pressure eclogites of the North Qaidam and Altun Mountains, NW China and their protoliths. AGU Fall Meeting Abstracts.
  43. Zhang, Liou, Yang and Yui., 2000, Petrochemical constraints for dual origin of garnet peridotites from the Dabie?Sulu UHP terrane, eastern?central China. Journal of Metamorphic Geology 18, 149-166. https://doi.org/10.1046/j.1525-1314.2000.00248.x