DOI QR코드

DOI QR Code

High-Temperature Cesium (Cs) Retention Ability of Cs-Exchanged Birnessite

세슘(Cs)으로 이온 교환된 버네사이트의 고온에서의 Cs 고정 능력

  • Yeongkyoo Kim (School of Earth System Sciences, Kyungpook National University)
  • 김영규 (경북대학교 지구시스템과학부)
  • Received : 2023.12.01
  • Accepted : 2023.12.21
  • Published : 2023.12.30

Abstract

Numerous studies have investigated the adsorptive sequestration of radioactive cesium in the natural environment. Among these studies, adsorption onto minerals and high-temperature treatment stand out as highly effective, as demonstrated by the use of zeolite. In this study, cesium was ion-exchanged with birnessite and subsequently underwent high-temperature treatment up to 1100℃ to investigate both mineral phase transformation and the leaching characteristics of cesium. Birnessite has a layered structure consisting of MnO6 octahedrons that share edges, demonstrating excellent cation adsorption capacity. The high-temperature treatment of cesium-ion-exchanged birnessite resulted in changes in the mineral phase, progressing from cryptomelane, bixbyite, birnessite to hausmannite as the temperature increased. This differs from the phase transformation observed in the tunneled manganese oxide mineral todorokite ion-exchanged with cesium, which shows phase transformation only to birnessite and hausmannite. The leaching of cesium from cesium-ion-exchanged birnessite was estimated by varying the reaction time using both distilled water and a 1 M NaCl solution. The leaching quantity changed according to the treatment temperature, reaction time, and type of reaction solution. Specifically, the cesium leaching was higher in the sample reacted with 1 M NaCl compared to the sample with distilled water and also increased with longer reaction time. For the samples reacted with distilled water, the cesium leaching initially increased and then decreased, while in the NaCl solution, the leaching decreased, increased again, and finally nearly stopped like the sample in the distilled water for the sample treated at 1100℃. These changes in leaching are closely associated with the mineral phases formed at different temperatures. The phase transformation to cryptomelane and birnessite enhanced cesium leaching, whereas bixbyite and hausmannite hindered leaching. Notably, hausmannite, the most stable phase occurring at the highest temperature, demonstrated the greatest ability to inhibit cesium leaching. This results strongly suggest that high-temperature treatment of cesium-ion-exchanged birnessite effectively immobilizes and sequesters cesium.

자연환경에 유출된 방사성 세슘(Cs)을 흡착 격리시키기 위한 다양한 연구들이 진행되어왔고 이 중에서 광물의 흡착 및 고온 처리는 제올라이트의 예에서 보여지는 것과 같이 매우 유효한 방법일 수 있다. 본 연구에서는 버네사이트를 Cs으로 이온 교환 시킨 후 고온 처리하여 광물상의 변화와 함께 Cs의 용출 특성을 알아보았다. 버네사이트는 MnO6 팔면체가 모서리를 공유하는 층상구조를 가지고 있는 광물로서 양이온 흡착능력이 뛰어난 광물이다. Cs을 이온 교환시킨 버네사이트를 1100℃까지 고온 처리한 결과, 온도가 증가함에 따라 크립토멜레인, 빅스바이트, 버네사이트, 하우스마나이트로 광물상의 변화가 관찰되었다. 이는 터널구조의 망간산화물 광물인 토도로카이트를 Cs으로 이온 교환시킨 후 열처리하였을 때 버네사이트와 하우스마나이트로만 상변화를 거치는 것과 다른 결과를 보여준다. Cs으로 이온 교환된 버네사이트는 증류수와 1 M NaCl 용액과 반응 시간을 달리하여 용출량을 측정하였으며 이러한 용출량은 각 온도구간에서의 광물상 변화, 반응시간, 반응 용액의 종류에 따라 상이한 용출량을 보였다. 증류수와 반응한 시료에 비하여 1 M NaCl과 반응한 시료에서 이온교환 반응에 의하여 용출량이 더 많았고 반응시간이 길어질수록 용출량은 증가하였다. 증류수와 반응한 경우는 Cs의 용출량이 증가하다 감소하고 NaCl 용액에서 반응시킨 시료의 경우 용출량의 감소 후 다시 증가하고 최종적으로는 1100℃에서는 증류수와 같이 거의 용출되지 않았다. 이러한 용출량의 변화는 각 온도에서 형성된 광물상과 밀접한 관련이 있다. 크립토멜레인과 버네사이트로의 상변화는 Cs의 용출량을 증가시키지만, 빅스바이트와 하우스마나이트는 Cs의 용출을 억제하며 가장 높은 온도에서 나타나는 가장 안정된 하우스마나이트는 Cs의 용출을 가장 크게 억제할 수 있는 것으로 보인다. 이러한 결과는 Cs을 이온 교환시킨 버네사이트의 고온처리를 통하여 Cs의 고정 및 격리가 효적으로 이루어질 수 있음을 보여준다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1003884).

References

  1. Amman, L., 2003, Cation exchange and adsorption on clays and clay minerals. Ph.D thesis, Christian-Albrechts University, Kiel, Germany.
  2. Ashraf, M. A, Akib, S., Maa, M. J., Yusoff, I. and Balkhair, K. S., 2014, Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical Reviews in Environmental Science and Technology, 44, 1740-1793. https://doi.org/10.1080/10643389.2013.790753
  3. Baek, W., Avramov, P. V. and Kim, Y., 2019, Nuclear magnetic resonance and theoretical simualtion study on Cs ion co-adsorbed with other alkali cations on illite. Applied Surface Science, 489, 766-775. https://doi.org/10.1016/j.apsusc.2019.06.034
  4. Baek, W., Ha, S., Hong, S., Kim, S. and Kim, Y., 2018, Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite. Micorporous and Mesoporous Materials, 264, 159-166. https://doi.org/10.1016/j.micromeso.2018.01.025
  5. Beresford, N. A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J.T. and Voigt, G., 2016, Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77-89. https://doi.org/10.1016/j.jenvrad.2016.02.003
  6. Bish, D.L. and Post, J.E., 1989, Thermal behavior of complex, tunnel-structure manganese oxides. American Mineralogist, 74, 177-186.
  7. Bosch, P., Caputo, D., Liguori, B. and Colella, C., 2004, Safe trapping of Cs in heat-treated zeolite matrices. Journal of Nuclear Materials, 324, 183-188. https://doi.org/10.1016/j.jnucmat.2003.10.001
  8. Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K. and Chorover, J., 2002, Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environmental Science and Technology, 36, 2670-2676. https://doi.org/10.1021/es0156892
  9. Cappelletti, P., Rapisardo, G., de Gennaro, B., Colella, A., Langella, A., Graziano, S.F., Bish, D.L. and de Gennaro, M., 2011, Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. Journal of Nuclear Materials, 414, 451-457. https://doi.org/10.1016/j.jnucmat.2011.05.032
  10. Faulring, G.M., Zwicker, W.K. and Forgeng, W.D., 1960, Thermal transformations and properties of cryptomelane. American Mineralogist, 45, 946-959.
  11. Figueira, B.A.M., Angelica, R.S., da Costa, M.L., Biggemann, D., Mercury, J.M.R. and Pollmann, H., 2013, Hydrothermal synthesis of Na-birnessite-type material using ores from Carajas (Amazon Region, Brazil) as Mn source. Microporous and Mesoporous Materials, 179, 212-216. https://doi.org/10.1016/j.micromeso.2013.06.011
  12. Golden, D.G., Dixon, J.B. and Chen, C.C., 1986, Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays and Clay Minerals, 34, 511-520. https://doi.org/10.1346/CCMN.1986.0340503
  13. Gu, B.X., Wang, L.M. and Ewing, R.C., 2000, The effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY. Journal of Nuclear Materials, 278, 64-72. https://doi.org/10.1016/S0022-3115(99)00224-X
  14. Hwang, J., Han, W.S., Choung, S., Kim, J.-W., Suk, H. and Lee, J., 2023, Diverse sorption capacitites and contribution of multiple sorptive sites on illitic clays to assess the immobilization of dissolved cesium in subsurface environments. Journal of Hazardous Materials, 441, 129973.
  15. Jiang, W.-T., Chang, P.-H., Wang, Y.-S., Tsai, Y., Jean, J.-S. and Li, Z., 2015, Sorption and desorption of tetracycline on layered manganese dioxide birnessite. International Journal of Environmental Science and Technology, 12, 1695-1704. https://doi.org/10.1007/s13762-014-0547-6
  16. Kim, S., Kim, Y. and Park, C., 2023, Cs fixation and leaching characteristics of high temperature-treated todorokite. Korean Journal of Mineralogy and Petrology, 36, 35-42.
  17. Kim, Y. and Kirkpatrick, R.J., 1997, 23Na and 133Cs NMR study of cation adsorption on mineral surfaces: Local environments, dynamics, and effects of mixed cations. Geochimica et Cosmochimica Acta, 61, 5199-5208. https://doi.org/10.1016/S0016-7037(97)00347-5
  18. Kudo, H., Miura, H. and Hariya, Y., 1990, Tetragonal-monoclinic transformation of cryptomelane at high temperature. Mineralogical Journal, 15, 50-63. https://doi.org/10.2465/minerj.15.50
  19. Lee, A., Chon, C.-M., Kim, J.G., Ryu, J. and Kim, Y., 2023, Irreversible cesium adsorption capacity of granite-origin soil. Journal of Radioanalytical and Nuclear Chemistry, https://doi.org/10.1007/s10967-023-09206-7.
  20. Li, L., Xu, Z., Li, H., Li, J., Hu, D., Xiang, Y., Han, L. and Peng, X., 2022, Immobilization of strontium and cesium by aluminosilicate ceramics derived from metakaolin geopolymer-zeolite A composite vis 1100℃ heating treatment. Ceramics International, 48, 15236-15242. https://doi.org/10.1016/j.ceramint.2022.02.054
  21. Liguori, B., Caputo, D., Iucolano, F., Apera, P. and de Gennaro, B., 2013, Entrapping of Cs and Sr in heat-treated zeolite matrices. Journal of Nuclear Materials, 435, 196-201. https://doi.org/10.1016/j.jnucmat.2012.12.043
  22. Ma, Y., Luo, J. and Suib, S.L., 1999, Syntheses of birnessites using alcohols as reducing reagents: Effects of synthesis parameters on the formation of birnessites. Chemistry of Materials, 11, 1972-1979. https://doi.org/10.1021/cm980399e
  23. Matern, K. and Mansfeldt, T., 2015, Molybdate adsorption by birnessite. Applied Clay Science, 108, 78-83. https://doi.org/10.1016/j.clay.2015.01.024
  24. Min, S. and Kim, Y., 2020, Physical characteristics of the birnessite and todorokite synthesized using various methods. Minerals, 10, 884.
  25. Min, S. and Kim, Y. 2022, Adsorption characteristics of Cs and cation selectivity of todorokite. Colloids and Surfaces A: Physical and Engineering Aspects, 650, 129652.
  26. Murota, K., Saito, T. and Tanak, S., 2016, Desorption kinetics of cesium from Fukushima soils. Journal of Environmental Radioactivity, 153, 134-140. https://doi.org/10.1016/j.jenvrad.2015.12.013
  27. Randall, S.R., Sherman, D.M. and Ragnarsdottir, K.V., 1998, An extended X-ray absrorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane (KMn8O16). Chemical Geology, 151, 95-106. https://doi.org/10.1016/S0009-2541(98)00073-4
  28. Ryabova, A.S., Istomin, S.Y., Dosaev, K.A., Bonnefont, A., Hadermann, J., Arkharova, N.A., Orekhov, A.S., Paria, S., Saveleva, V.A., Kerangueven, G., Antipov, E.V., Savinova, E.R. and Tsirlina, G.A., 2021, Mn2O3 oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media: Highly active if properly manipulated. Electrochimica Acta, 367, 137378.
  29. Takahashi, J., Tamura, K., Suda, T., Matsumura, R. and Onda, Y., 2015, Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 139, 351-361. https://doi.org/10.1016/j.jenvrad.2014.07.004
  30. Tang, X., Li, H., Liu, Z.-H., Yang, Z. and Wang, Z., 2011, Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure. Journal of Power Sources, 196, 855-859. https://doi.org/10.1016/j.jpowsour.2010.06.067
  31. Tsukada, H., Yamada, D. and Yamaguchi, N., 2022, Accumulation of 137Cs in aggregated organominerals assemblage in pasture soils 8 years after the accident at the Fukushima Daiichi nuclear power plant. Science of The Total Environment, 806, Part 2, 150688.
  32. Vermeersch, E., Kosek, F., De Grave, J., Jehlicka, J., Vandenabeele, P. and Rousaki, A., 2023, Identification of tunnel structures in manganese oxdie minerals using micro-Raman spectroscopy. Journal of Raman Spectroscopy, 54, 1212.
  33. Wang, J., Baskaran, M., Cukrov, N. and Du, J., 2022, Geochemical mobility of 137Cs in marine environments based on laboratory and field studies. Chemical Geology, 614, 121179.
  34. Wang, J., Zhangil, G. and Zhangil, P., 2017, Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. Journal of Material Chemistry A, 5, 5719-5725. https://doi.org/10.1039/C6TA09793F
  35. Yang, L.-X., Zhu, Y.-J. and Cheng, G.-F., 2007, Synthesis of well-crystallized birnessite using ethylene glycol as a reducing reagent. Materials Research Bulletin, 42, 159-164. https://doi.org/10.1016/j.materresbull.2006.04.038
  36. Yu, Q., Ohnuki, T., Kozai, N., Sakamoto, F., Tanaka, K. and Sasaki, K., 2017, Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chemical Geology, 470, 141-151. https://doi.org/10.1016/j.chemgeo.2017.09.008