DOI QR코드

DOI QR Code

Illite Polytypes: The Characteristics and the Application to the Fault Age Determination

일라이트 폴리타입: 그 특성과 단층 활동연대 결정에의 활용

  • Song, Yun-Goo (Department of Earth System Sciences, Yonsei University)
  • 송윤구 (연세대학교 지구시스템과학과)
  • Received : 2012.04.02
  • Accepted : 2012.04.22
  • Published : 2012.04.28

Abstract

The 1M and $2M_1$ stacking sequences are the most frequently encountered in the illite species among the possible 6 polytypes. The $1M_d$, derived from the 1M polytype which exhibits a variable degree of disorder in the stacking sequence, is also observed in illite samples. In this paper, the author introduces and reviews the theoretical background of the quantitative analysis method of illite polytypes, and considers the possibility to determine the fault age and its reactivation age using K/Ar age-dating based on the quantification of illite polytypes in the fault system. For the increase of the accuracy and precision of the illite age analysis method, the occurrence, identification, and mineralogical characterization of illite polytypes should be defined in detail. The broadening effect of (hkl) reflections, due to disordering of 1M polytype and the presence of I/S minerals with expandability, are also considered as the main parameters controlling the quantification of illite polytypes using the WILDFIRE(C)simulation.

일라이트에서 적층방식을 달리하여 나타나는 폴리타입은 대부분 1M과 $2M_1$이며, 적층 Disordering에 따른 $1M_d$ 또한 흔히 관찰된다. 본 해설에서는 일라이트의 폴리타입을 구분하고 정량적으로 해석할 수 있는 광물학적 이론적 근거와 방법을 소개하고, 소규모 열수환경에 준하는 단층대 내 생성시기 및 조건을 달리하는 일라이트 폴리타입 혼합물에의 적용을 통한 단층 활동 및 재활동연대 결정에의 활용 가능성을 검토하였다. 단층연대해석의 정확도와 신빙도를 높이기 위해서는 단층암 대상시료 내 일라이트 폴리타입의 생성환경에 대한 정보, 동정 및 광물학적 특성에 대한 규명이 이루어져야 한다. 또한 WILDFIRE(C)시뮬레이션을 이용한 정량분석에서, $1M_d$ 폴리타입의 Disordering 정도 및 I/S 광물의 팽창도에 기인한 (hkl) 회절선들의 Broadening 효과 등 일라이트 폴리타입 정량분석법의 오차요인을 최소화시키는 하기 방법을 고려해야 할 것이다.

Keywords

References

  1. Clay Minerals Society Nomenclature Committee(1984) Clays and Clay Minerals, v.32, p.239. https://doi.org/10.1346/CCMN.1984.0320316
  2. Drits, V.A., Weber, F., Salyn, A.L. and Tsipursky, S.I. (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays and Clay Minerals, v.41, p.389-398. https://doi.org/10.1346/CCMN.1993.0410316
  3. Eberl, D.D. and Srodon, J. (1984) Illite. In:Ribbe, P.H.(ed.) Micas, Reviews in Mineralogy, v.13, p.495- 544.
  4. Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. https://doi.org/10.1346/CCMN.1996.0440615
  5. Grim, R.E., Bray, R.M. and Bradley, W.F. (1937)The mica in argillaceous sediments. American Mineralogist, v.22, p.813-829.
  6. Hower, J. and Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. American Mineralogist, v.51, p.825-854.
  7. Kralik, M., Klima, K. and Riedmller, G. (1987) Dating fault gouges. Nature, v.327, p.315-317. https://doi.org/10.1038/327315a0
  8. Meunier, A. (2005) Clays. Springer-Verlag Berlin, New York, 288p.
  9. Meunier, A. and Velde, B. (1989) Solid solution in I/S mixed layer minerals and illite. American Mineralogist, v.74, p.1106-1112.
  10. Meunier, A. and Velde, B. (2010) Illite. Springer-Verlag Berlin, Heidelberg, p.11-17.
  11. Moore, D.M. and Reynolds Jr., R.C. (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, New York, p.330-358.
  12. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S.(eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
  13. Reynolds Jr., R.C. (1993) Three-dimensional X-ray powder diffraction from disordered illite: Simulation and interpretation of the diffraction patterns. In: Reynolds R.C. and Walker, J.R.(eds.) Computer application to Xray powder diffraction analysis of clay minerals. Clay Minerals Society workshop lectures, Boulder CO. v.5, p.43-78.
  14. Reynolds Jr., R.C. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
  15. Reynolds Jr., R.C. and Thomson, C.H. (1993) Illite from the Postdam sandstone of New York: A probable noncentrosymmetric mica structure. Clays and Clay Minerals, v.42, p.66-72.
  16. Smith, J.V. and Yoder, H.S. (1956) Experimental and theoretical studies of mica polymorphs. Miner.Mag., v.31, p.209-231. https://doi.org/10.1180/minmag.1956.031.234.03
  17. Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. J. Structural Geology, v.27, p.1563-1576 https://doi.org/10.1016/j.jsg.2005.05.002
  18. Srodon, J. (1999) Extracting K-Ar ages from shales: A theoretical test. Clay Minerals, v.33, p.375-378.
  19. Tanaka, H., Uehara, N. and Itaya, T. (1995) Timing of the cataclastic deformation along the Akaishi tectonic line, central Japan. Contrib. Mineral. Petrol., v.120, p.150-158. https://doi.org/10.1007/BF00287112
  20. Uysal, I.T., Mutlu, H., Altunel, E., Karabacak, V. and Golding, S.D. (2006) Clay mineralogical and isotopic( K-Ar, ${\delta}^{18}O,\;{\delta}d$) constraints on the evolution of the North Anatolian Fault Zone, Turky. https://doi.org/10.1016/j.epsl.2005.12.025
  21. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R. and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  22. Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604. https://doi.org/10.1180/000985500546918

Cited by

  1. Generation of the Staurolite Based on a Relation Between Illite-Muscovite Transition: A Study on the Shale of the Baekunsa Formation, Buyeo vol.26, pp.1, 2013, https://doi.org/10.9727/jmsk.2013.26.1.55